00983nam a2200241|i 450099100365969970753620021219124631.0020117s1965 de u u geruub11844814-39ule_instLE02737593ExLDip.to Studi GiuridiciitaRudolph, Hans529180Stadt und Staat in romischen Italien :Untersuchungen uber die Entwicklung des Munizipalwesens in der Republikanischen zeit /von Hans RudolphGottingen :Vandenhoeck & Ruprecht,c1965vii, 257 p. ;24 cm.Rist. dell'ed.: Leipzig, 1935RomaPolitica e governo.b1184481421-09-0620-12-02991003659699707536LE027 R-III/E 150 C.21LE027-9972le027-E0.00-l- 00000.i1209689120-12-02Stadt und Staat in romischen Italien900211UNISALENTOle02701-01-02ma -gerde 0103467nam 2200529 450 991078866260332120220822053552.00-8218-7895-60-8218-2140-7(CKB)3240000000069831(EBL)3113369(SSID)ssj0000629412(PQKBManifestationID)11369994(PQKBTitleCode)TC0000629412(PQKBWorkID)10732673(PQKB)10608221(MiAaPQ)EBC3113369(RPAM)12864343(PPN)197106331(EXLCZ)99324000000006983120020722h20022002 uy| 0engur|n|---|||||txtccrQuantum computation and information AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. /Samuel J. Lomonaco, Jr., Howard E. Brandt, editorsProvidence, Rhode Island :American Mathematical Society,[2002]©20021 online resource (322 p.)Contemporary mathematics,3050271-4132Description based upon print version of record.Includes bibliographical references.Contents -- Preface -- Gilles Brassard Awarded Pot de Vin Prize -- List of Participants -- Space searches with a quantum robot -- Perturbation theory and numerical modeling of quantum logic operations with a large number of qubits -- Inconclusive rate with a positive operator valued measure -- 1. Introduction -- 2. Inconclusive rates comparison -- 3. Disturbed inconclusive rate -- 4. Consistency -- 5. Conclusion -- 6. Acknowledgements -- References -- Quantum amplitude amplification and estimation -- Manipulating the entanglement of one copy of a two-particle pure entangled state -- Geometric algebra in quantum information processing -- Quantum computing and the Jones polynomial -- 1. Introduction -- 2. Dirac Brackets -- 3. Braiding, Projectors and the Temperley Lieb Algebra -- 4. The Bracket Polynomial -- 5. Knot Amplitudes -- 6. Quantum Computing -- 7. Summary -- References -- Quantum hidden subgroup algorithms: A mathematical perspective -- Part 1. Preamble -- 1. Introduction -- 2. An example of Shor's quantum factoring algorithm -- 3. Definition of the hidden subgroup problem (HSP) and hidden subgroup algorithms (HSAs) -- Part 2. Algebraic Preliminaries -- 4. The Character Group -- 5. Fourier analysis on a finite abelian group -- 6. Implementation issues: Group algebras as Hilbert spaces -- Part 3. QRandÏ?(): The Progenitor of All QHSAs -- 7. Implementing ProbÏ? (X) with quantum subroutine QRANDÏ?() -- Part 4. Vintage Simon Algorithms -- 8. Properties of the probability distribution ProbÏ? (X) when Ï? has a hidden subgroup -- 9. A Markov process MÏ? induced by ProbÏ? -- A proof that measured data and equations of quantum mechanics can be linked only by guesswork.Contemporary mathematics (American Mathematical Society).3050271-4132Quantum computersCongressesQuantum computers004.1/4Lomonaco Samuel J.Brandt Howard E.MiAaPQMiAaPQMiAaPQBOOK9910788662603321Quantum computation and information377078UNINA