02766nam 2200601 450 991078856160332120230803200331.03-11-037827-23-11-035078-510.1515/9783110350784(CKB)3280000000038959(EBL)1663124(SSID)ssj0001433579(PQKBManifestationID)11907950(PQKBTitleCode)TC0001433579(PQKBWorkID)11415039(PQKB)10159820(MiAaPQ)EBC1663124(DE-B1597)252931(OCoLC)890071015(OCoLC)897035466(DE-B1597)9783110350784(Au-PeEL)EBL1663124(CaPaEBR)ebr11010201(CaONFJC)MIL805792(EXLCZ)99328000000003895920150211h20142014 uy 0engurnn#---|u||utxtccrFinite elements in vector lattices /Martin R. WeberBerlin, [Germany] ;Boston, [Massachusetts] :De Gruyter,2014.©20141 online resource (230 p.)Description based upon print version of record.3-11-035077-7 Includes bibliographical references and index.Front matter --Contents --1. Introduction --2. Ordered vector spaces and vector lattices --3. Finite, totally finite and self majorizing elements in Archimedean vector lattices --4. Finite elements in vector lattices of linear operators --5. The space of maximal ideals of a vector lattice --6. Topological characterization of finite elements --7. Representations of vector lattices and their properties --8. Vector lattices of continuous functions with finite elements --9. Representations of vector lattices by means of continuous functions --10. Representations of vector lattices by means of bases of finite elements --List of Examples --List of Symbols --Bibliography --IndexThe book is the first systematical treatment of the theory of finite elements in Archimedean vector lattices and contains the results known on this topic up to the year 2013.It joins all importantcontributions achieved by a series of mathematicians that can only be found in scattered in literature.Boundary value problemsNumerical solutionsBoundary value problemsNumerical solutions.515.35SK 600rvkWeber Martin R.16317MiAaPQMiAaPQMiAaPQBOOK9910788561603321Finite elements in vector lattices3673912UNINA