00943cam0 2200265 450 E60020005926920201102111215.020100202d2009 |||||ita|0103 baitaIT<<Il >>filosofo tascabiledai presocratici a Wittgenstein, 44 ritratti per una storia del pensiero in miniaturaArmando MassarentiParmaGuandac2009232 p.20 cmPiccola biblioteca Guanda001LAEC000280772001 *Piccola biblioteca GuandaMassarenti, ArmandoA600200059534070123998ITUNISOB20201102RICAUNISOBUNISOB100147886E600200059269M 102 Monografia moderna SBNM100008243Si147886donocatenacciUNISOBUNISOB20100202090009.020201102111200.0AlfanoFilosofo tascabile1469488UNISOB02490nam 2200577 a 450 991078855670332120230725045609.01-283-14494-89786613144942981-4322-01-6(CKB)3360000000001407(EBL)731266(OCoLC)740444827(SSID)ssj0000521420(PQKBManifestationID)12233488(PQKBTitleCode)TC0000521420(PQKBWorkID)10518400(PQKB)10615168(MiAaPQ)EBC731266(WSP)00001165 (Au-PeEL)EBL731266(CaPaEBR)ebr10480216(CaONFJC)MIL314494(EXLCZ)99336000000000140720110429d2010 uy 0engur|n|---|||||txtccrThe chaotic pendulum[electronic resource] /Moshe GittermanSingapore ;Hackensack, N.J. ;London World Scientificc20101 online resource (140 p.)Description based upon print version of record.981-4322-00-8 Includes bibliographical references (p. 133-138) and index.Preface; Contents; List of Equations; Chapter 1 Pendulum Equations; Chapter 2 Deterministic Chaos; Chapter 3 Pendulum subject to a Random Force; Chapter 4 Systems with Two Degrees of Freedom; Chapter 5 Conclusions; Bibliography; Glossary; IndexPendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multipPendulumChaotic behavior in systemsPendulum.Chaotic behavior in systems.003/.857Gitterman M536602MiAaPQMiAaPQMiAaPQBOOK9910788556703321The chaotic pendulum3676447UNINA01781nam0 2200373 i 450 VAN004701920240226111714.897978-04-86653-75-420060703d1987 |0itac50 baengUS|||| |||||Generalized integral transformationsA. H. Zemanian[Unabridged corrected republication]New YorkDover1987XVI, 300 p22 cm001VAN00235662001 Dover books on advanced mathematics210 New YorkDover46-XXFunctional analysis [MSC 2020]VANC019764MF46F05Topological linear spaces of test functions, distributions and ultradistributions [MSC 2020]VANC021696MF46F12Integral transforms in distribution spaces [MSC 2020]VANC022655MF44A15Special integral transforms (Legendre, Hilbert, etc.) [MSC 2020]VANC023299MF44A40Calculus of MikusiĆski and other operational calculi [MSC 2020]VANC024843MFUSNew YorkVANL000011ZemanianArmen H.VANV03697213591Dover <editore>VANV108158650Zemanian, Armen HumpartsoumZemanian, Armen H.VANV061403Zemanian, A.H.Zemanian, Armen H.VANV064767Zemanian, A. H.Zemanian, Armen H.VANV064768ITSOL20240301RICABIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08VAN0047019BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 46-XX 4974 08 2687 II 20060825 Generalized integral transformations335999UNICAMPANIA