04902nam 2200625 450 991078815030332120200520144314.01-78242-235-8(CKB)2670000000602210(EBL)1991652(SSID)ssj0001568577(PQKBManifestationID)16218053(PQKBTitleCode)TC0001568577(PQKBWorkID)14835650(PQKB)10784257(Au-PeEL)EBL1991652(CaPaEBR)ebr11033607(CaONFJC)MIL751949(OCoLC)905993163(MiAaPQ)EBC1991652(EXLCZ)99267000000060221020150330h20152015 uy 0engur|n|---|||||txtccrModeling, characterization and production of nanomaterials electronics, photonics and energy applications /edited by Vinod K. Tewary and Yong ZhangAmsterdam, [Netherlands] :Woodhead Publishing,2015.©20151 online resource (555 p.)Woodhead Publishing Series in Electronic and Optical Materials ;Number 73Description based upon print version of record.1-336-20663-2 1-78242-228-5 Includes bibliographical references at the end of each chapters and index.Front Cover; Modeling, Characterization and Production of Nanomaterials: Electronics, Photonics and Energy Applications; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Part One: Modeling techniques for nanomaterials; Chapter 1: Multiscale modeling of nanomaterials: recent developments and future prospects; 1.1. Introduction; 1.2. Methods; 1.2.1. Quantum mechanics; 1.2.1.1. Introduction; 1.2.1.2. Hartree-Fock theory; 1.2.1.3. Electron-correlated methods; 1.2.1.4. Density functional theory; 1.2.1.5. Other methods1.2.2. Classical mechanics1.2.2.1. Molecular mechanics; 1.2.2.2. Molecular dynamics; 1.2.2.3. Monte Carlo; 1.2.2.4. Forcefields; 1.2.2.5. Applications of classical tools to nanomaterials; 1.2.3. Mesoscale; 1.2.3.1. Models; 1.2.3.2. Forcefields; 1.2.3.3. Potentials; 1.2.3.4. Dynamics; 1.2.3.5. Parameterization; 1.2.4. Multiscale modeling; 1.2.4.1. Hierarchical methods; 1.2.4.2. Hybrid methods; 1.2.4.3. QM/MM; 1.3. Nanomaterials; 1.3.1. Polymer nanocomposites; 1.3.2. Inorganic nanostructures; 1.3.2.1. Zeolites; 1.3.2.2. Metal-organic frameworks (MOFs); 1.3.2.3. Catalysts; 1.3.3. Soft matter1.3.3.1. Lipids1.3.3.2. Surfactants and polymers; 1.3.3.3. Peptide assemblies; 1.4. Application examples; 1.4.1. Polymer nanodielectrics; 1.4.2. Lithium-ion batteries; 1.4.3. Reinforced resins for aerospace; 1.5. Conclusion; References; Chapter 2: Multiscale Green's functions for modeling of nanomaterials ; 2.1. Introduction; 2.1.1. Need for bridging length scales; 2.1.2. Bridging the time scales; 2.1.3. Application; 2.2. Green's function method: the basics; 2.3. Discrete lattice model of a solid; 2.4. Lattice statics Greens function; 2.5. Multiscale Green's function2.6. Causal Green's function for temporal modeling2.7. Application to 2D graphene; 2.8. Conclusions and future work; Acknowledgments; References; Chapter 3: Numerical simulation of nanoscale systems and materials; 3.1. Introduction; 3.2. Molecular statics and dynamics: an overview; 3.3. Static calculations of strain due to interface; 3.4. Dynamic calculations of kinetic frictional properties; 3.5. Fundamental properties of dynamic ripples in graphene; 3.6. Conclusions and general remarks; Disclaimer; Acknowledgments; References; Part Two: Characterization techniques for nanomaterialsChapter 4: TEM studies of nanostructures4.1. Introduction; 4.2. Polarity determination and stacking faults of 1D ZnO nanostructures; 4.2.1. Polarity determination in 1D ZnO nanostructures; 4.2.2. Stacking-fault-induced growth of ultrathin ZnO nanobelts; 4.3. Structure analysis of superlattice nanowire by TEM: a case of SnO2 (ZnO:Sn)n nanowire; 4.4. TEM analysis of 1D nanoheterostructure; 4.4.1. Axially heterostructured nanowires; 4.4.2. Coaxial core-shell nanowires; 4.4.2.1. Highly lattice-mismatched ZnO/ZnSe and ZnO/ZnS core-shell nanowires4.4.2.2. Nearly lattice-matched CdSe/ZnTe core-shell nanowiresWoodhead Publishing series in electronic and optical materials ;Number 73.Nanostructured materialsNanostructured materials.620.5Tewary Vinod K.Zhang YongMiAaPQMiAaPQMiAaPQBOOK9910788150303321Modeling, characterization and production of nanomaterials3709551UNINA