03550nam 2200637Ia 450 991078141010332120230617033945.00-8014-6511-70-8014-7850-20-8014-6233-910.7591/9780801462337(CKB)2550000000073228(OCoLC)769190459(CaPaEBR)ebrary10516003(SSID)ssj0000647302(PQKBManifestationID)11404342(PQKBTitleCode)TC0000647302(PQKBWorkID)10593174(PQKB)11560554(MiAaPQ)EBC3138279(MdBmJHUP)muse28921(DE-B1597)478591(OCoLC)979743949(DE-B1597)9780801462337(Au-PeEL)EBL3138279(CaPaEBR)ebr10516003(CaONFJC)MIL681834(EXLCZ)99255000000007322820050512d2005 uy 0engurcn|||||||||txtccrProlegomena to a philosophy of religion[electronic resource] /J.L. SchellenbergIthaca, NY Cornell University Press20051 online resource (242 p.) Bibliographic Level Mode of Issuance: Monograph1-322-50552-7 0-8014-4358-X Includes bibliographical references and index.Frontmatter -- Contents -- Preface -- 1. On Religion -- 2. On Belief -- 3. On Religious Belief and Religious Disbelief -- 4. On Religious Skepticism -- 5. On Religious Faith (I) -- 6. On Religious Faith (II) -- 7. On the Aims of Philosophy of Religion -- 8. On Principles of Evaluation in Philosophy of Religion -- Index"There is no attempt here to lay down as inviolable or to legislate certain ways of looking at things or ways of proceeding for philosophers of religion, only proposals for how to deal with a range of basic issues-proposals that I hope will ignite much fruitful discussion and which, in any case, I shall take as a basis for my own ongoing work in the field."-from the PrefaceProviding an original and systematic treatment of foundational issues in philosophy of religion, J. L. Schellenberg's new book addresses the structure of religious and irreligious belief, the varieties of religious skepticism, and the nature of religion itself. From the author's searching analysis of faith emerges a novel understanding of propositional faith as requiring the absence of belief. Schellenberg asks what the aims of the field should be, setting out a series of principles for carrying out some of the most important of these aims.His account of justification considers not only belief but also other responses to religious claims and distinguishes the justification of responses, propositions, and persons. Throughout Prolegomena to a Philosophy of Religion, Schellenberg is laying the groundwork for an elaboration of his own vision while at the same time suggesting how philosophers might rethink assumptions guiding most of today's work in analytic philosophy of religion.ReligionPhilosophyReligionsReligionPhilosophy.Religions.210Schellenberg J. L.1959-1503399MiAaPQMiAaPQMiAaPQBOOK9910781410103321Prolegomena to a philosophy of religion3750456UNINA04574nam 2200589 450 991078664070332120230120014643.01-4832-6742-3(CKB)3710000000200401(EBL)1901516(SSID)ssj0001433434(PQKBManifestationID)11995108(PQKBTitleCode)TC0001433434(PQKBWorkID)11414538(PQKB)11062000(MiAaPQ)EBC1901516(EXLCZ)99371000000020040120150202h19741974 uy 0engur|n|---|||||txtccrHandbook of mathematical formulas /by Hans-Jochen Bartsch ; translation by Herbert LiebscherNew York, New York ;London, [England] :Academic Press,1974.©19741 online resource (529 p.)"Translation of the 9th ed. of Mathematische Formeln"--T.p. verso."With 353 illustrations."Includes index.1-322-55831-0 0-12-080050-0 Front Cover; Handbook of Mathematical Formulas; Copyright Page; PREFACE; Table of Contents; Chapter 0. Mathematical Signs and Symbols; 0.1. Mathematical signs; 0.2. Symbols used in the theory of sets; 0.3. Symbols of logic; Chapter 1. Arithmetic; 1.1. Set theory; 1.2. Real numbers; 1.3. Imaginary or complex numbers; 1.4. Proportions; 1.5. Logarithms; 1.6. Combinatoric analysis; 1.7. Per cent calculation, interest calculation; 1.8. Sequences and series; 1.9. Determinants; 1.10. Matrices; Chapter 2. Equations, functions, vectors; 2.1. Equations; 2.2. Inequalities; 2.3. Functions2.4. Vector calculus2.5. Reflection in a circle, inversion; Chapter 3. Geometry; 3.1. General; 3.2. Planimetry; 3.3. Stereometry; 3.4. Goniometry, plane trigonometry, hyperbolic functions; 3.5. Spherical trigonometry; Chapter 4. Analytical geometry; 4.1. Analytical geometry of the plane; 4.2. Analytical geometry of space; Chapter 5. Differential calculus; 5.1. Limits; 5.2. Difference quotient, differential quotient, differential; 5.3. Rules for differentiation; 5.4. Derivatives of the elementary functions; 5.5. Differentiation of a vector function; 5.6. Graphical differentiation5.7. Extrema of functions (maxima and minima)5.8. Mean-value theorems; 5.9. Indeterminate expressions; Chapter 6. Differential geometry; 6.1. Plane curves; 6.2. Space curves; 6.3. Curved surfaces; Chapter 7. Integral calculus; 7.1. Definition of the indefinite integral; 7.2. Basic integrals; 7.3. Rules of integration; 7.4. A few special integrals; 7.5. Definite integral; 7.6· Line integral; 7.7. Multiple integrals; Chapter 8. Differential equations; 8.1, General; 8.2. Ordinary differential equations of the first order; 8.3. Ordinary differential equations of the second order8.4. Ordinary differential equations of the third order8.5. Integration of differential equations by power series; 8.6. Partial differential equations; Chapter 9. Infinite series, Fourier series, Fourier integral, Laplace transformation; 9.1. Infinite series; 9.2. General statements on Fourier series, Fourier integrals, and Laplace transforms; 9.3. Fourier series; 9.4. Fourier integral, example of calculation; 9.5. Laplace transforms; 9.6. Employment of Laplace transforms; solution of differential equations; 9.7. Table of correspondences of some rational Laplace integralsChapter 10. Theory of probability statistics; error calculation; mathematical analysis of observations; 10.1. Theory of probability; 10.2. Statistics; 10.3. Error calculations; 10.4. Calculus of observations; Chapter 11. Linear Optimization; 11.1. General; 11.2. Graphical procedure; 11.3. Simplex procedure (simplex algorithm); 11.4. Simplex table; Chapter 12. Algebra of logic (Boolean algebra); 12.1. General; 12.2. Arithmetical laws, arithmetical rules; 12.3. Further possibilities of interconnecting two input variables (lexigraphic order); 12.4. Normal forms; 12.5. Karnaugh tables; APPENDIXIndexHandbook of Mathematical FormulasMathematicsFormulaeMathematics510.212510/.21/2Bartsch Hans-Jochen54320Liebscher HerbertMiAaPQMiAaPQMiAaPQBOOK9910786640703321Handbook of mathematical formulas345464UNINA00939cam0 22002771 450 SOBE0002376820241008092836.0978881510760220120322d2005 |||||ita|0103 baitaITIntroduzione alla storia del Vicino Oriente anticoMaria Luisa UbertiBolognaIl Mulino2005165 p.ill.21 cmItinerariStoria001LAEC000203072001 *Itinerari. StoriaUberti, Maria LuisaSOBA00003354070205554ITUNISOB20241008RICAUNISOBUNISOB900156902SOBE00023768M 102 Monografia moderna SBNM900005214SI156902acquistocatenacciUNISOBUNISOB20120322124823.020241008092836.0SpinosaIntroduzione alla storia del Vicino Oriente antico1002319UNISOB