03391nam 2200541 450 991078662920332120230120014732.01-4832-6518-8(CKB)3710000000200732(EBL)1901600(SSID)ssj0001432266(PQKBManifestationID)11850314(PQKBTitleCode)TC0001432266(PQKBWorkID)11405184(PQKB)10217268(MiAaPQ)EBC1901600(MiAaPQ)EBC5093682(EXLCZ)99371000000020073220190403d1988 uy 0engur|n|---|||||txtccrAlgebraic geometry and commutative algebra in honor of Masayoshi NagataVolume I /edited by Hiroaki Hijikata [and six others]Tokyo :Academic Press,[1988]©19881 online resource (417 p.)Description based upon print version of record.1-322-55915-5 0-12-348031-0 Includes bibliographical references at the end of each chapters.Front Cover; Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA; Copyright Page; Foreword; Table of Contents of Volume II; Determinantal Loci and Enumerative Combinatorics of Young Tableaux; 1. Introduction; First Chapter. YOUNG TABLEAUX AND DETERMINANTAL POLYNOMIALS IN BINOMIAL COEFFICIENTS; 2. Tableaux and monomials; 3. Determinantal polynomials of any width; 4. Determinantal polynomials of width two; Second Chapter.ENUMERATION OF YOUNG TABLEAUX; 5. Counting tableaux of any width; 6. Bitableaux; 7. Counting bitableaux; 8. Counting monomials; 9. Bitableaux and monomialsThird Chapter.UNIVERSAL DETERMINANTAL IDENTITY10. Preamble; 11. The mixed size case; 12. The cardinality condition; 13. The maximal size case; 14. The basic case; 15. Laplace development; 16. The full depth case; 17. Deduction of the full depth case; 18. The straightening law; 19. Problem; Fourth Chapter.APPLICATIONS TO IDEAL THEORY; 20. Determinantal loci; 21. Vector spaces and homogeneous rings; 22. Standard basis; 23. Second fundamental theorem of invariant theory; 24. Generalized second fundamental theorem of invariant theory; References6. Moduli7. Explanations; References; On Rings of Invariants of Finite Linear Groups; 1. Fundamental groups; 2. Proof of Theorem A; 3. Additional results; References; Invariant Differentials; 1. Introduction; 2. Use of the étale slice theorem; 3. The ñnite group case; References; Classification of Polarized Manifoldsof Sectional Genus Two; Introduction; Notation, Convention and Terminology; 1. Classification, first step; 2. The case K ~ (3 - n)L; 3. The case of a hyperquadric fíbration over a curve; 4. Polarized surfaces of sectional genus two; Appendix; References12. Proof of Theorem 1Algebraic Geometry and Commutative AlgebraGeometry, AlgebraicData processingGeometry, AlgebraicData processing.516.35Hijikata HiroakiMiAaPQMiAaPQMiAaPQBOOK9910786629203321Algebraic geometry and commutative algebra in honor of Masayoshi Nagata3818160UNINA