02917oam 2200673I 450 991078515200332120230725024901.00-429-13960-81-4200-7391-510.1201/9781420073911 (CKB)2670000000044677(EBL)581728(OCoLC)680036278(SSID)ssj0000418046(PQKBManifestationID)11270224(PQKBTitleCode)TC0000418046(PQKBWorkID)10369954(PQKB)10816307(MiAaPQ)EBC581728(Au-PeEL)EBL581728(CaPaEBR)ebr10412008(CaONFJC)MIL692653(OCoLC)680622755(EXLCZ)99267000000004467720180331d2011 uy 0engur|n|---|||||txtccrFrailty models in survival analysis /Andreas WienkeBoca Raton :Taylor & Francis,2011.1 online resource (322 p.)Chapman & Hall/CRC biostatistics seriesA CRC title.1-322-61371-0 1-4200-7388-5 Includes bibliographical references and index.Front cover; Contents; List of Tables; List of Figures; Preface; Chapter 1: Introduction; Chapter 2: Survival Analysis; Chapter 3: Univariate Frailty Models; Chapter 4: Shared Frailty Models; Chapter 5: Correlated Frailty Models; Chapter 6: Copula Models; Appendix A; References; Back coverThe concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. ""Frailty Models in Survival Analysis"" presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariChapman & Hall/CRC biostatistics series.Failure time data analysisMathematicsSurvival analysis (Biometry)MathematicsMortalityMathematical modelsDemographyMathematicsFailure time data analysisMathematics.Survival analysis (Biometry)Mathematics.MortalityMathematical models.DemographyMathematics.519.5/4631.80bclWienke Andreas.1527132MiAaPQMiAaPQMiAaPQBOOK9910785152003321Frailty models in survival analysis3769681UNINA01796nam0 2200397 i 450 VAN0010404720240806100725.22N978-3-319-10741-720151203d2014 |0itac50 baengCH|||| |||||Probabilistic diophantine approximationrandomness in lattice point countingJózsef BeckChamSpringer2014XVI, 487 p.ill.24 cm001VAN000304862001 Springer monographs in mathematics210 Berlin [etc.]Springer1989-VAN00241114Probabilistic diophantine approximation140995311JxxDiophantine approximation, transcendental number theory [MSC 2020]VANC023205MF11KxxProbabilistic theory: distribution modulo 1; metric theory of algorithms [MSC 2020]VANC021431MFArea principleKW:KInhomogeneous Pell inequalitiesKW:KMarkov ChainsKW:KProbabilistic Diophantine approximationKW:KQuadratic irrational rotationKW:KRiesz productKW:KCHChamVANL001889BeckJózsefVANV081103348406Springer <editore>VANV108073650ITSOL20250131RICAhttp://dx.doi.org/10.1007/978-3-319-10741-7E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA CENTRO DI SERVIZIO SBAVAN15NVAN00104047BIBLIOTECA CENTRO DI SERVIZIO SBA15CONS SBA EBOOK 4491 15EB 4491 20191106 Probabilistic diophantine approximation1409953UNICAMPANIA