05660nam 22006734a 450 991078453090332120200520144314.01-281-07224-997866110722470-08-053786-3(CKB)1000000000384528(EBL)316944(OCoLC)476108995(SSID)ssj0000212854(PQKBManifestationID)11206289(PQKBTitleCode)TC0000212854(PQKBWorkID)10140241(PQKB)11009160(Au-PeEL)EBL316944(CaPaEBR)ebr10206432(CaONFJC)MIL107224(MiAaPQ)EBC316944(EXLCZ)99100000000038452820020326d2002 uy 0engur|n|---|||||txtccrNumerical modelling and analysis of fluid flow and deformation of fractured rock masses[electronic resource] /Xing Zhang and David J. Sanderson1st ed.Amsterdam ;Boston Pergamon20021 online resource (301 p.)Description based upon print version of record.0-08-043931-4 Includes bibliographical references (p. [261]-275) and index.Front Cover; Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses; Copyright Page; Contents; Preface; Chapter 1. Introduction to Modelling Deformation and Fluid Flow of Fractured Rock; 1.1. Introduction; 1.2. Approaches to modelling rock systems; 1.3. Continuum models; 1.4. Flow models; 1.5. Discontinuum models; 1.6. Overview of UDEC; 1.7. Summary of numerical modelling; Chapter 2. Modelling of Simple Rock Blocks; 2.1. Introduction; 2.2. Basic components of natural fracture networks; 2.3. Model geometry and initial conditions2.4. Basic behaviour of deformation and fluid flow2.5. Effects of fracture geometry; 2.6. Effects of fracture properties; 2.7. Effects of applied boundary stresses; 2.8. Effects of rock deformation models; 2.9. Summary; Chapter 3. Evaluation of 2-Dimensional Permeability Tensors; 3.1. Introduction; 3.2. Calculation of components of flow-rates; 3.3. Permeability in naturally fractured rocks; 3.4. Geometrical effects on permeability; 3.5. Effects of stress on permeability; 3.6. Conclusions; Appendix 3-A 1: Input codes for example one; Appendix 3-A2: Derivation of 2-D permeability tensorChapter 4. Scaling of 2-D Permeability Tensors4.1. Introduction; 4.2. Development of the previous approach; 4.3. Testing the concept of a representative element volume by down-scaling; 4.4. Scaling-up of permeability; 4.5. Effects of sample number and sample size; 4.6. Determining the permeability of a region; 4.7. Conclusions; Chapter 5. Percolation Behaviour of Fracture Networks; 5.1. Introduction; 5.2. Modelling of 2-dimensional fracture networks; 5.3. Density, percolation threshold and fractal dimension; 5.4. Critical behaviour of fractured rock masses; 5.5. ConclusionsChapter 6. Slip and Fluid Flow around An Extensional Fault6.1. Introduction; 6.2. Outline of modelling; 6.3. Stress distribution and fluid flow in model A: At a shallow depth with a hydrostatic fluid pressure; 6.4. Comparison of model A with a supra-hydrostatic fluid pressure at greater depth; 6.5. Effects of irregularities in fault zone; 6.6. Discussion of dynamic response of fluid-dilation interactions; 6.7. Conclusions; Chapter 7. Instability and Associated Localization of Deformation and Fluid Flow in Fractured Rocks; 7.1. Introduction; 7.2. Numerical determination of instability7.3. Instability and R-ratio7.4. Effects of fracture network geometry; 7.5. Multifractal description of flow localisation; 7.6. Permeability of three natural fracture networks before and at critical stress state; 7.7. Effects of loading direction; 7.8. Is the crust in a critical state?; 7.9. Implications for mineral deposits; 7.10. Conclusions; Chapter 8. Grain Scale Flow of Fluid in Fractured Rocks; 8.1. Introduction; 8.2. Simulation of Deformation and Fracturing in Matrix Models; 8.3. Dual Permeability Model; 8.4. Results; 8.5. Discussion and ConclusionsChapter 9. Changes of Permeability due to Excavation of Ship-Locks of the Three Gorges Project, ChinaOur understanding of the subsurface system of the earth is becoming increasingly more sophisticated both at the level of the behaviour of its components (solid, liquid and gas) as well as their variations in space and time. The implementation of coupled models is essential for the understanding of an increasing number of natural phenomena and in predicting human impact on these. The growing interest in the relation between fluid flow and deformation in subsurface rock systems that characterise the upper crust has led to increasingly specialized knowledge in many branches of earth sciencRocksFractureMathematical modelsRock mechanicsMathematical modelsFluid dynamicsMathematical modelsRocksFractureMathematical models.Rock mechanicsMathematical models.Fluid dynamicsMathematical models.624.1/5132Zhang X(Xiaopeng)1500543Sanderson D. J1500544MiAaPQMiAaPQMiAaPQBOOK9910784530903321Numerical modelling and analysis of fluid flow and deformation of fractured rock masses3727286UNINA02187nam0 22004813i 450 SBL036240620251003044353.0IT725660 20100701d1972 ||||0itac50 baitaitz01i xxxe z01nz01ncRDAcarrierSindacati, inflazione e produttività Paolo Sylos LabiniBariLaterza1972165 p.20 cmLibri del tempo Laterza127001CFI00020182001 Libri del tempo Laterza127Sindacati, inflazione e produttività .MSE0068896CFIV00236038347ItaliaPolitica economica1990-1997FIRCFIC022743E306.30945ISTITUZIONI ECONOMICHE. Italia23331.21RETRIBUZIONI20331.8809451761SINDACATI IN ITALIA20332.4Moneta12338.9SVILUPPO ECONOMICO21338.945SVILUPPO ECONOMICO E POLITICHE DI SVILUPPO. Italia20338.945SVILUPPO ECONOMICO. Italia21338.945Sviluppo e crescita economica. Italia22IT/4436.0LAVORO SINDACATI DEI LAVORATORI ITALIA 1968-1989RSylos Labini, PaoloCFIV002360070183308ITIT-00000020100701IT-BN0095 IT-SA0252 IT-CE0066 IT-NA0581 IT-BN0052 NAP MGA $NAP 83IAN $NAP FCFONDO $NAP 01POZZO LIB.Vi sono collocati fondi di economia, periodici di ingegneria e scienze, periodici di economia e statistica e altri fondi comprendenti documenti di economia pervenuti in dono. NAP CVBSAGOSTINO$SBL0362406Biblioteca Centralizzata di Ateneo1 v. 01POZZO LIB.F. SANTI 404 0101 0060033185E VMA 1 v. (Precedente collocazione S 424)B 2022110920221109 01 83 CV FC MGSindacati, inflazione e produttività 38347UNISANNIO