05420nam 2200661Ia 450 991078436620332120230120004352.01-280-75200-997866107520030-08-046969-8(CKB)1000000000350087(EBL)285842(OCoLC)162130461(SSID)ssj0000147464(PQKBManifestationID)11150834(PQKBTitleCode)TC0000147464(PQKBWorkID)10011604(PQKB)10166055(MiAaPQ)EBC285842(Au-PeEL)EBL285842(CaPaEBR)ebr10160371(CaONFJC)MIL75200(EXLCZ)99100000000035008720060508d2006 uy 0engur|n|---|||||txtccrEngineering analysis with ANSYS software[electronic resource] /Y. Nakasone and S. Yoshimoto ; T.A. StolarskiSecond edition.Oxford ;Burlington, MA Butterworth-Heinemann20061 online resource (473 p.)Description based upon print version of record.0-7506-6875-X Includes bibliographical references and index.ENGINEERING ANALYSIS WITH ANSYS SOFTWARE; COPYRIGHT PAGE; CONTENTS; PREFACE; THE AIMS AND SCOPE OF THE BOOK; CHAPTER 1 BASICS OF FINITE-ELEMENT METHOD; 1.1 METHOD OF WEIGHTED RESIDUALS; 1.1.1 Sub-domain method (Finite volume method); 1.1.2 Galerkin method; 1.2 RAYLEIGH-RITZ METHOD; 1.3 FINITE-ELEMENT METHOD; 1.3.1 One-element case; 1.3.2 Three-element case; 1.4 FEM IN TWO-DIMENSIONAL ELASTOSTATIC PROBLEMS; 1.4.1 Elements of finite-element procedures in the analysis of plane elastostatic problems; 1.4.2 Fundamental formulae in plane elastostatic problems; 1.4.2.1 Equations of equilibrium1.4.2.2 Strain-displacement relations1.4.2.3 Stress-strain relations (constitutive equations); 1.4.2.4 Boundary conditions; 1.4.3 Variational formulae in elastostatic problems: the principle of virtual work; 1.4.4 Formulation of the fundamental finite-element equations in plane elastostatic problems; 1.4.4.1 Strain-displacement matrix or [B] matrix; 1.4.4.2 Stress-strain matrix or [D] matrix; 1.4.4.3 Element stiffness equations; 1.4.4.4 Global stiffness equations; 1.4.4.5 Example: Finite-element calculations for a square plate subjected to uniaxial uniform tension; BIBLIOGRAPHYCHAPTER 2 OVERVIEW OF ANSYS STRUCTURE AND VISUAL CAPABILITIES2.1 INTRODUCTION; 2.2 STARTING THE PROGRAM; 2.2.1 Preliminaries; 2.2.2 Saving and restoring jobs; 2.2.3 Organization of files; 2.2.4 Printing and plotting; 2.2.5 Exiting the program; 2.3 PREPROCESSING STAGE; 2.3.1 Building a model; 2.3.1.1 Defining element types and real constants; 2.3.1.2 Defining material properties; 2.3.2 Construction of the model; 2.3.2.1 Creating the model geometry; 2.3.2.2 Applying loads; 2.4 SOLUTION STAGE; 2.5 POSTPROCESSING STAGE; CHAPTER 3 APPLICATION OF ANSYS TO STRESS ANALYSIS; 3.1 CANTILEVER BEAM3.1.1 Example problem: A cantilever beam3.1.2 Problem description; 3.1.2.1 Review of the solutions obtained by the elementary beam theory; 3.1.3 Analytical procedures; 3.1.3.1 Creation of an analytical model; 3.1.3.2 Input of the elastic properties of the beam material; 3.1.3.3 Finite-element discretization of the beam area; 3.1.3.4 Input of boundary conditions; 3.1.3.5 Solution procedures; 3.1.3.6 Graphical representation of the results; 3.1.4 Comparison of FEM results with experimental ones; 3.1.5 Problems to solve; APPENDIX: PROCEDURES FOR CREATING STEPPED BEAMSA3.1 Creation of a stepped beamA3.1.1 How to cancel the selection of areas; A3.2 Creation of a stepped beam with a rounded fillet; A3.2.1 How to display area numbers; 3.2 THE PRINCIPLE OF ST. VENANT; 3.2.1 Example problem: An elastic strip subjected to distributed uniaxial tensile stress or negative pressure at one end and clamped at the other end; 3.2.2 Problem description; 3.2.3 Analytical procedures; 3.2.3.1 Creation of an analytical model; 3.2.3.2 Input of the elastic properties of the strip material; 3.2.3.3 Finite-element discretization of the strip area3.2.3.4 Input of boundary conditionsFor all engineers and students coming to finite element analysis or to ANSYS software for the first time, this powerful hands-on guide develops a detailed and confident understanding of using ANSYS's powerful engineering analysis tools. The best way to learn complex systems is by means of hands-on experience. With an innovative and clear tutorial based approach, this powerful book provides readers with a comprehensive introduction to all of the fundamental areas of engineering analysis they are likely to require either as part of their studies or in getting up to speed fast with the usANSYS (Computer system)EngineeringData processingANSYS (Computer system)EngineeringData processing.620.0028553Nakasone Y629374Stolarski T. A627319Yoshimoto S739477MiAaPQMiAaPQMiAaPQBOOK9910784366203321Engineering analysis with ANSYS software3723709UNINA