02954nam 2200637Ia 450 991078404090332120230721025422.01-281-12138-X9786611121389981-270-746-8(CKB)1000000000334159(EBL)312295(OCoLC)318546850(SSID)ssj0000190862(PQKBManifestationID)11165865(PQKBTitleCode)TC0000190862(PQKBWorkID)10180978(PQKB)10249459(MiAaPQ)EBC312295(WSP)00006346(Au-PeEL)EBL312295(CaPaEBR)ebr10188847(CaONFJC)MIL112138(OCoLC)173318632(EXLCZ)99100000000033415920071213d2007 uy 0engur|n|---|||||txtccrLectures on fuzzy and fuzzy SUSY physics[electronic resource] /A.P. Balachandran, S. Kürkçüoğlu, S. VaidyaSingapore ;Hackensack, NJ World Scientific20071 online resource (196 p.)Description based upon print version of record.981-270-466-3 Includes bibliographical references (p. 169-178) and index.Preface; Contents; 1. Introduction; 2. Fuzzy Spaces; 3. Star Products; 4. Scalar Fields on the Fuzzy Sphere; 5. Instantons, Monopoles and Projective Modules; 6. Fuzzy Nonlinear Sigma Models; 7. Fuzzy Gauge Theories; 8. The Dirac Operator and Axial Anomaly; 9. Fuzzy Supersymmetry; 10. SUSY Anomalies on the Fuzzy Supersphere; 11. Fuzzy Spaces as Hopf Algebras; Bibliography; IndexNoncommutative geometry provides a powerful tool for regularizing quantum field theories in the form of fuzzy physics. Fuzzy physics maintains symmetries, has no fermion-doubling problem and represents topological features efficiently. These lecture notes provide a comprehensive introduction to the field. Starting with the construction of fuzzy spaces, using the concrete examples of the fuzzy sphere and fuzzy complex projective spaces, the book moves on to discuss the technology of star products on noncommutative R2d and on the fuzzy sphere. Scalar, spinor and gauge field theories as well as eNoncommutative differential geometryFuzzy systemsSupersymmetryMathematicsNoncommutative differential geometry.Fuzzy systems.SupersymmetryMathematics.512/.55Balachandran A. P.1938-1466077Kürkçüoğlu S(Seckin)1576898Vaidya S(Sachindeo)1576899MiAaPQMiAaPQMiAaPQBOOK9910784040903321Lectures on fuzzy and fuzzy SUSY physics3855033UNINA