08953nam 2200577 450 991055183880332120221008121553.03-030-94995-8(MiAaPQ)EBC6899808(Au-PeEL)EBL6899808(OCoLC)1302012625(CKB)21348183500041(OCoLC)1308495129(PPN)261518593(EXLCZ)992134818350004120221008d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFunctional polymer nanocomposites for wastewater treatment /edited by Mpitloane Joseph Hato and Suprakas Sinha Ray1st edition.Cham, Switzerland :Springer,[2022]©20221 online resource (267 pages) (XVI, 254 p. 60 illus., 52 illus. in color.)Springer Series in Materials Science ;v.323Print version: Hato, Mpitloane Joseph Functional Polymer Nanocomposites for Wastewater Treatment Cham : Springer International Publishing AG,c2022 9783030949945 Includes bibliographical references and index.Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1 Nanocellulose-Graphene Oxide-Based Nanocomposite for Adsorptive Water Treatment -- 1.1 Introduction -- 1.2 Water Treatment and Approaches -- 1.2.1 Adsorption Wastewater Treatment -- 1.2.2 Filtration Wastewater Treatment -- 1.2.3 Catalytic Wastewater Treatment -- 1.2.4 Other Wastewater Treatment Approaches -- 1.3 Nanocellulose -- 1.3.1 Introduction -- 1.3.2 Structure, Source-Based Overview, and Nomenclature with Categories -- 1.3.3 Preparation Approaches for NCs -- 1.4 Graphene Oxide/Graphite Oxide -- 1.4.1 Preparation Approaches for Graphite/Graphene Oxide -- 1.4.2 Structural Properties of GiO/GO -- 1.5 Nanocellulose-Graphene Oxide-Based Nanocomposites -- 1.5.1 NC-GO-Based Nanocomposites -- 1.5.2 Nanocellulose-rGO Nanocomposites -- 1.5.3 Adsorption Isotherms -- 1.5.4 Vital Parameters in Adsorption Studies -- 1.5.5 Kinetics of Adsorption -- 1.5.6 Adsorption Thermodynamics -- 1.5.7 Nanocellulose GO-Based Adsorbents Mechanism with Wastewater Pollutants -- 1.6 Adsorption-Based Water Treatment Application Using Nanocellulose-Graphene Oxide-Based (NGON) Nanocomposites -- 1.6.1 Removal of Heavy Metal Ions -- 1.6.2 Removal of Toxic Dyes -- 1.6.3 Removal of Radioactive Residues/Element-Ions -- 1.6.4 Removal of Oils -- 1.6.5 Residual Antibiotics -- 1.6.6 Pesticide Adsorption -- 1.7 Conclusions, Limitations, and Future Perspectives -- References -- 2 Recent Progress in Polysaccharide-Based Hydrogel Beads as Adsorbent for Water Pollution Remediation -- 2.1 Introduction -- 2.2 Polysaccharides -- 2.2.1 Sodium Alginate -- 2.2.2 Starch -- 2.2.3 Chitosan -- 2.2.4 Cellulose -- 2.3 Polysaccharide-Based Hydrogel Beads Preparation -- 2.3.1 Dropping Method: Ionic Cross-Linking -- 2.3.2 Emulsion Solidification Method -- 2.4 Water Purification Through Adsorption Systems.2.4.1 Batch/Discontinuous Adsorption System -- 2.4.2 Dynamic/Continuous Adsorption System -- 2.5 Application of Polysaccharide-Based Hydrogel Beads in Wastewater Treatment -- 2.5.1 Polysaccharide-Based Hydrogel Beads -- 2.5.2 Polysaccharide-Based Hydrogel Composite Beads -- 2.6 Conclusion and Future Outlook -- References -- 3 Flocculation of Waste Water Using Architectural Copolymers: Recent Advancement and Future Perspective -- 3.1 Introduction -- 3.2 Coagulation Versus Flocculation -- 3.2.1 Inorganic Coagulants -- 3.2.2 Synthetic Organic Flocculants -- 3.2.3 Steps Involving Flocculation -- 3.2.4 Mechanism of Flocculation -- 3.3 Charge Neutralization -- 3.4 Polymer Bridging -- 3.5 Electrostatic Patch -- 3.6 Mechanism Followed by Natural Bio-Flocculants -- 3.7 Mechanism Followed by Grafted Polymeric Flocculants -- 3.8 Factors Affecting Flocculation -- 3.8.1 Molecular Weight of Polymers and Charge Density -- 3.8.2 Flocculants Dosage and Condition of Mixing -- 3.8.3 Shear Effect on Flocs -- 3.8.4 Ionic Strength of the Solution -- 3.8.5 Effect of pH -- 3.8.6 Effect of Particle Size -- 3.8.7 Effect of Temperature -- 3.9 Flocculation Modeling -- 3.10 Kinetics of Aggregation of Particles -- 3.11 Collision Frequency of Particles -- 3.12 Literature Survey -- 3.13 Selection of Flocculants -- 3.14 Role of Architectural Polymers in Flocculation -- 3.15 Graft Copolymer Nanocomposite as Flocculants -- 3.16 Conclusion -- References -- 4 Sustainable Bio-Polymer-Based Nanocomposites for Wastewater Treatment -- 4.1 Introduction -- 4.2 Types of Biopolymers Used for Treating Wastewater -- 4.2.1 Polysaccharides -- 4.2.2 Polypeptides -- 4.2.3 Polyphenols -- 4.2.4 Polynucleotides (DNA) -- 4.3 Application of Biopolymers in Wastewater Treatment -- 4.4 Different Methods of Modification and Architecture of Biopolymers -- 4.5 Bionanocomposites for Wastewater Treatment.4.6 Adsorption Mechanism -- 4.7 Sustainability Criteria for Wastewater Treatment -- 4.7.1 Treatment Efficiency -- 4.7.2 The Production Cost of Water Treatment -- 4.7.3 Processing Treatment Cost-Spent Money Economy Impact -- 4.7.4 The Production Cost of Biopolymers -- 4.7.5 Environment Effect and Eco-Friendly -- 4.7.6 Health and Safety Risks -- 4.8 Practical Snag of Wastewater-Treatment Method -- 4.9 Conclusions -- References -- 5 Electrospun Nanofiber-Based Composites for Arsenic Removal in Water and Wastewater -- 5.1 Introduction and Background -- 5.2 Environmental Contamination by Heavy Metals -- 5.3 Arsenic Metal -- 5.4 Methods for the Removal of Arsenic -- 5.4.1 Conventional Methods -- 5.5 Electrospun Nanofibers -- 5.6 Reported Work on the Removal of Arsenic Using Nanofibers/Composite Nanofibers -- 5.6.1 Polymers/Composites Used for Fabrication of Nanofibers and Their Properties -- 5.6.2 Performance Characteristics of NFs in the Removal of Arsenic from Water -- 5.7 Conclusion and Perspectives -- References -- 6 Functionalized Biopolymer Nanocomposites for the Degradation of Textile Dyes -- 6.1 Introduction -- 6.2 Classification of Biopolymers -- 6.3 Biopolymer Nanocomposites -- 6.3.1 Introduction to Nanocomposites -- 6.3.2 Biopolymer-Noble Metal or Metal Nanocomposites -- 6.3.3 Biopolymer-Nonmetal Nanocomposites -- 6.3.4 Biopolymer-Metal Oxide Nanocomposites -- 6.3.5 Biopolymer Metal/Metal Oxide Nanocomposites -- 6.3.6 Biopolymer-Metal Sulfide Nanocomposites -- 6.3.7 Other Types of Biopolymer Nanocomposites -- 6.4 Conclusions -- References -- 7 Sequestration of Organic Dyes from Wastewater Using Hydrogel Nanocomposites -- 7.1 Introduction -- 7.2 Hydrogels -- 7.2.1 Background -- 7.2.2 Synthesis of Hydrogels -- 7.2.3 Hybrid Hydrogels -- 7.3 Conclusions -- References.8 The Effect of Zeolitic Imidazole Framework-8@Graphene Oxide on the Performance of Polymeric Membranes Used for Wastewater Treatment -- 8.1 Introduction -- 8.2 General Description of Metal-Organic Framework (MOFs) -- 8.2.1 Isoreticular Metal-Organic Frameworks (IRMOFs) -- 8.2.2 Zeolitic Imidazolate Frameworks (ZIFs) -- 8.2.3 Materials of Institute Lavoisier Frameworks (MILs) -- 8.2.4 University of Oslo (UiO) -- 8.2.5 Summary of MOFs -- 8.3 Factors to Consider When Choosing MOFs in Water Application -- 8.3.1 MOFs Should Have High Water Stability -- 8.3.2 Suitable Pore Size for MOFs Appropriate for Use in Membrane Technology -- 8.3.3 Importance of Uniform Dispersibility of Fillers in Composite Membranes -- 8.4 ZIF-8@GO Fillers Used in Membrane Technology for Wastewater Treatment -- 8.4.1 Morphology -- 8.4.2 Membrane Wettability -- 8.4.3 Water Flux -- 8.4.4 Fouling Resistance -- 8.4.5 Wastewater Treatment -- 8.5 Conclusion -- References -- Index.This book provides an overview of the latest advances in applications of nanocomposites in wastewater treatment. This book is dedicated to recent developments in the application of polymer nanocomposites to wastewater treatment. Based on their morphology and tailored compositions, polymer nanocomposites provide powerful tools for environmental remediation via selective adsorption of contaminants in complex environmental matrices.Springer Series in Materials Science :323.WaterPurificationNanocomposites (Materials)SewagePurificationWaterPurification.Nanocomposites (Materials)SewagePurification.628.3Ray Suprakas Sinha1973-Hato Mpitloane JosephMiAaPQMiAaPQMiAaPQBOOK9910551838803321Functional polymer nanocomposites for wastewater treatment2920759UNINA02925oam 22007335 450 991078362620332120200520144314.01-280-44753-297866104475340-8213-6510-X10.1596/978-0-8213-6509-0(CKB)1000000000247134(EBL)459909(OCoLC)228138796(SSID)ssj0000085846(PQKBManifestationID)11112890(PQKBTitleCode)TC0000085846(PQKBWorkID)10024687(PQKB)10906403(MiAaPQ)EBC459909(Au-PeEL)EBL459909(CaPaEBR)ebr10124813(CaONFJC)MIL44753(The World Bank)ocm64390600(US-djbf)14273495(EXLCZ)99100000000024713420060222d2006 uy 0engurcn|||||||||txtrdacontentcrdamediacrrdacarrierChina's development priorities /Shahid Yusuf, Kaoru NabeshimaWashington, DC :World Bank,[2006]copyright 2006.xiii, 154 pages illustrations ;23 cmDirections in developmentDescription based upon print version of record.0-8213-6509-6 Includes bibliographical references and index.Contents; Acknowledgments; About the Author; Acronyms and Abbreviations; PART 1 On the Eve of the Eleventh Five-Year Plan; Tables; Figures; PART 2 Policies for Rapid, Balanced, and Sustainable Growth; PART 3 Summing Up; References; IndexOver the past two decades China's growth has been rapid, social indicators have improved, and poverty levels have inched downward. However,widening inequality, increasing resource and financial imbalances, and growing environmental concerns provide China with daunting challenges in improving the quality of growth. The rapid growth that will remain China's principal vehicle for raising standards of living and reducing poverty will derive from urbanization, increased market efficiency, and improvement in the technological capability of Chinese firms. But although growth will be critically importDirections in development (Washington, D.C.)World Bank e-Library.EconomicsChinaEconomic policyChinaEconomic conditionsEconomics.338.95183.39bclYusuf Shahid1949-127446Nabeshima Kaoru693249DLCDLCBAKERC#PUKMPULNLGGCDLCBOOK9910783626203321China's development priorities3674707UNINA