02688nam 2200601Ia 450 991078321920332120230617015342.01-281-87225-39786611872250981-256-227-3(CKB)1000000000033299(EBL)227139(OCoLC)475933041(SSID)ssj0000103015(PQKBManifestationID)11126840(PQKBTitleCode)TC0000103015(PQKBWorkID)10060433(PQKB)11536663(MiAaPQ)EBC227139(WSP)00005605(Au-PeEL)EBL227139(CaPaEBR)ebr10079928(CaONFJC)MIL187225(EXLCZ)99100000000003329920041124d2004 uy 0engur|n|---|||||txtccrAnalytic number theory[electronic resource] an introductory course /Paul T. Bateman, Harold G. DiamondNew Jersey World Scientificc20041 online resource (375 p.)Description based upon print version of record.981-238-938-5 Includes bibliographical references (p. 353-354) and indexes.Analytic Number Theory: An Introductory Course; Preface; Contents; Chapter 1 Introduction; Chapter 2 Calculus of Arithmetic Functions; Chapter 3 Summatory Functions; Chapter 4 The Distribution of Prime Numbers; Chapter 5 An Elementary Proof of the P.N.T.; Chapter 6 Dirichlet Series and Mellin Transforms; Chapter 7 Inversion Formulas; Chapter 8 The Riemann Zeta Function; Chapter 9 Primes in Arithmetic Progressions; Chapter 10 Applications of Characters; Chapter 11 Oscillation Theorems; Chapter 12 Sieves; Chapter 13 Application of Sieves; Appendix A Results from Analysis and AlgebraBibliographyIndex of Names and Topics; Index of SymbolsThis valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable (""elementary"")and complex variable (""analytic"") methods are employed.Number theoryMathematical analysisNumber theory.Mathematical analysis.512.73Bateman P. T60335Diamond Harold G.1940-58232MiAaPQMiAaPQMiAaPQBOOK9910783219203321Analytic number theory3812774UNINA