01235nam a2200313 i 450099100112005970753620020507183627.0951102s1994 us ||| | eng 0387941932b10803671-39ule_instLE01307338ExLDip.to Matematicaeng519.4AMS 65N30Brenner, Susanne C.31806The mathematical theory of finite element methods /Susanne C. Brenner, L. Ridgway ScottNew York :Springer-Verlag,c1994xii, 294 p. :ill. ;24 cmTexts in applied mathematics,0939-2475 ;15Includes bibliographical references (p.287-290) and indexBoundary value problemsFinite element methodScott, L. Ridgwayauthorhttp://id.loc.gov/vocabulary/relators/aut66642.b1080367123-02-1728-06-02991001120059707536LE013 65N BRE21 (1994)12013000039336le013-E0.00-l- 00000.i1090803128-06-02Mathematical theory of finite element methods330800UNISALENTOle01301-01-95ma -engus 4103351nam 22006972 450 991078311040332120151005020622.01-107-13745-41-280-43672-797866104367290-511-17917-01-139-14905-90-511-05602-80-511-30622-90-511-54282-80-511-07081-0(CKB)1000000000018160(EBL)218217(OCoLC)57254213(SSID)ssj0000099636(PQKBManifestationID)11108874(PQKBTitleCode)TC0000099636(PQKBWorkID)10014376(PQKB)10759110(UkCbUP)CR9780511542824(MiAaPQ)EBC218217(Au-PeEL)EBL218217(CaPaEBR)ebr10070294(CaONFJC)MIL43672(PPN)144866463(EXLCZ)99100000000001816020090505d2003|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierAffine Hecke algebras and orthogonal polynomials /I.G. Macdoald[electronic resource]Cambridge :Cambridge University Press,2003.1 online resource (ix, 175 pages) digital, PDF file(s)Cambridge tracts in mathematics ;157Title from publisher's bibliographic system (viewed on 05 Oct 2015).0-511-06235-4 0-521-82472-9 Includes bibliographical references (p. 170-172) and index.Introduction -- Affine root systems -- The extended affine Weyl group -- The braid group -- The affine Hecke algebra -- Orthogonal polynomials -- The rank 1 case -- Bibliography -- Index.In recent years there has developed a satisfactory and coherent theory of orthogonal polynomials in several variables, attached to root systems, and depending on two or more parameters. These polynomials include as special cases: symmetric functions; zonal spherical functions on real and p-adic reductive Lie groups; the Jacobi polynomials of Heckman and Opdam; and the Askey-Wilson polynomials, which themselves include as special or limiting cases all the classical families of orthogonal polynomials in one variable. This book, first published in 2003, is a comprehensive and organised account of the subject aims to provide a unified foundation for this theory, to which the author has been a principal contributor. It is an essentially self-contained treatment, accessible to graduate students familiar with root systems and Weyl groups. The first four chapters are preparatory to Chapter V, which is the heart of the book and contains all the main results in full generality.Cambridge tracts in mathematics ;157.Affine Hecke Algebras & Orthogonal PolynomialsHecke algebrasOrthogonal polynomialsHecke algebras.Orthogonal polynomials.512/.55Macdonald I. G(Ian Grant),885552UkCbUPUkCbUPBOOK9910783110403321Affine Hecke algebras and orthogonal polynomials3702260UNINA