03219nam 2200757Ia 450 991078278940332120230721004309.01-283-39678-597866133967853-11-020304-910.1515/9783110203042(CKB)1000000000692164(EBL)370771(OCoLC)301965291(SSID)ssj0000341657(PQKBManifestationID)11233752(PQKBTitleCode)TC0000341657(PQKBWorkID)10395527(PQKB)11088281(MiAaPQ)EBC370771(DE-B1597)33379(OCoLC)1024050123(OCoLC)1032691589(OCoLC)1037981187(OCoLC)1042029973(OCoLC)1046617312(OCoLC)1047003308(OCoLC)1049625271(OCoLC)1054881591(OCoLC)979583290(DE-B1597)9783110203042(Au-PeEL)EBL370771(CaPaEBR)ebr10256560(CaONFJC)MIL339678(EXLCZ)99100000000069216420080222d2008 uy 0engur|||||||||||txtccrA posteriori estimates for partial differential equations[electronic resource] /Sergey RepinBerlin ;New York Walter de Gruyterc20081 online resource (328 p.)Radon series on computational and applied mathematics,1865-3707 ;4Description based upon print version of record.3-11-019153-9 Includes bibliographical references (p. [291]-311) and index. Frontmatter -- Contents -- Preface -- 1. Introduction -- 2. Overview -- 3. Poisson's equation -- 4. Linear elliptic problems -- 5. Elasticity -- 6. Incompressible viscous fluids -- 7. Generalizations -- 8. Nonlinear problems -- 9. A posteriori estimates for other problems -- BackmatterThis book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis.After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods.Radon series on computational and applied mathematics ;4.Differential equations, PartialError analysis (Mathematics)Partial Differential Equation, Approximate Solution, A Posteriori Error Estimates.Differential equations, Partial.Error analysis (Mathematics)515/.353SK 500rvkRepin Sergey I497137MiAaPQMiAaPQMiAaPQBOOK9910782789403321A posteriori estimates for partial differential equations3755041UNINA