01063nam--2200361---450-99000231525020331620090707124425.0000231525USA01000231525(ALEPH)000231525USA0100023152520041229d1945----km-y0itay0103----baitaIT||||||||001yyIstituzioni di diritto privatoMario Rotondi5. edMilanoAmbrosiana1945XVI, 680 p.23 cmManuali di scienze giuridiche e sociali22001Manuali di scienze giuridiche e sociali22001001-------2001ROTONDI,Mario38972ITsalbcISBD990002315250203316XXV.1.B 96 (IG I 21)2255 G.XXV.1.B 96 (IG I)00235743BKGIUSIAV51020041229USA011314RSIAV19020090707USA011244Istituzioni di diritto privato658824UNISA01040nam a2200241 i 4500991001724999707536030717s2001 it b 000 0 ita db12188098-39ule_instDip.to MatematicaengAMS 20D15AMS 12E15Boccardi, Angela451522Una dimostrazione gruppale del teorema di Wedderburn sui corpi finiti. Tesi di laurea /laureanda Angela Boccardi ; relat. Alessio RussoLecce :Università degli Studi. Facoltà di Scienze. Corso di laurea in Matematica,a.a. 2001-0235 p. ;30 cmSolvable groupsRusso, Alessio.b1218809802-04-1417-07-03991001724999707536LE013 TES 2001/02 BOC112013000139869le013gE13.00-no 00000.i1256956223-09-03Dimostrazione gruppale del teorema di Wedderburn sui corpi finiti. Tesi di laurea145915UNISALENTOle01317-07-03ma -itait 0103120nam 2200697Ia 450 991078277990332120230721004226.01-282-19584-097866121958463-11-020319-710.1515/9783110203196(CKB)1000000000691462(EBL)364664(OCoLC)316327616(SSID)ssj0000127780(PQKBManifestationID)11141913(PQKBTitleCode)TC0000127780(PQKBWorkID)10062565(PQKB)11377029(MiAaPQ)EBC364664(DE-B1597)33450(DE-B1597)9783110203196(Au-PeEL)EBL364664(CaPaEBR)ebr10256630(CaONFJC)MIL219584(EXLCZ)99100000000069146220080507d2008 uy 0engur|||||||||||txtccrComputer arithmetic and validity[electronic resource] theory, implementation, and applications /Ulrich KulischBerlin ;New York Walter De Gruyterc20081 online resource (428 p.)De Gruyter studies in mathematics ;33Description based upon print version of record.3-11-020318-9 Frontmatter -- Contents -- Introduction -- Chapter 1 First Concepts -- Chapter 2 Ringoids and Vectoids -- Chapter 3 Definition of Computer Arithmetic -- Chapter 4 Interval Arithmetic -- Chapter 5 Floating-Point Arithmetic -- Chapter 6 Implementation of Floating-Point Arithmetic on a Computer -- Chapter 7 Hardware Support for Interval Arithmetic -- Chapter 8 Scalar Products and Complete Arithmetic -- Chapter 9 Sample Applications -- Backmatter The present book deals with the theory of computer arithmetic, its implementation on digital computers and applications in applied mathematics to compute highly accurate and mathematically verified results. The aim is to improve the accuracy of numerical computing (by implementing advanced computer arithmetic) and to control the quality of the computed results (validity). The book can be useful as high-level undergraduate textbook but also as reference work for scientists researching computer arithmetic and applied mathematics.De Gruyter studies in mathematics ;33.Computer arithmeticComputer arithmetic and logic unitsFloating-point arithmeticComputer Arithmetic.Floating Point Arithmetic.Interval Arithmetic.Verified Computing.Computer arithmetic.Computer arithmetic and logic units.Floating-point arithmetic.004.0151 22SK 900rvkKulisch Ulrich1499431MiAaPQMiAaPQMiAaPQBOOK9910782779903321Computer arithmetic and validity3725447UNINA