00953nam0-22003131i-450-99000748811040332120051130134004.0000748811FED01000748811(Aleph)000748811FED0100074881120030814d1964----km-y0itay50------baengGBabd-----001yyHistory of CartographyLeo Bagrowrevised and enlarged by R.A. SkeltonLondonC.A Watts and C.1964312 p., 116 tav.20 c. di tav. col.27 cmCartografiaStoriaCartografi, incisori e stampatoriBagrow,Leo Semenovic<1881-1957>417297Skelton,Raleigh Ashlin<1906-1970>ITUNINARICAUNIMARCBK990007488110403321A-06-035Ist.8694ILFGEILFGEHistory of Cartography675565UNINA05275nam 2200673Ia 450 991078212120332120230617040925.01-281-93470-49786611934705981-279-481-6(CKB)1000000000537790(EBL)1681634(OCoLC)815752366(SSID)ssj0000201652(PQKBManifestationID)11184564(PQKBTitleCode)TC0000201652(PQKBWorkID)10245676(PQKB)11578183(MiAaPQ)EBC1681634(WSP)00005515(Au-PeEL)EBL1681634(CaPaEBR)ebr10255525(CaONFJC)MIL193470(EXLCZ)99100000000053779020040816d2004 uy 0engur|n|---|||||txtccrMetal mediated template synthesis of ligands[electronic resource] /Otilia Costisor, Wolfgang LinertSingapore ;River Edge, NJ World Scientific Pub. Co.c20041 online resource (307 p.)Description based upon print version of record981-238-813-3 Includes bibliographical references (p. 257-294) and index.Contents ; Preface ; The Template Effect ; 1.1. Types of Template Effects ; 1.2. The Template Effect as a Molecular Organizer Effect ; 1.3. Factors Affecting the Product of a Template Reaction ; 1.3.1. Coordination of ligands ; 1.3.2. The chelate effect ; 1.3.3. Macrocyclic effect1.4. The Negative Template Effect 1.5. Advantages of Metal Template Reaction ; Alkylation Reactions ; 2.1. Alkylation of the Nitrogen Atom ; 2.2. Alkylation of the Sulfur Atom ; 2.2.1. Open chain systems ; 2.2.2. Macrocyclic ligands ; Schiff Condensation ; 3.1. Mechanistic Aspects3.2. Open-chain Ligands 3.3. Macrocyclic Ligands ; 3.3.1 Diimine macrocycles ; 3.3.2. Tetraimine macrocycles ; 3.4. Cage Ligands ; 3.5 Compartmental Ligands ; 3.5.1. Closed-chain ligands ; 3.5.2. Open chain ligands ; Mannich Condensation ; 4.1. Mechanistic Aspects4.2 Acyclic Ligands 4.2.1. Polyamine ligands ; 4.2.2. NO donor ligands ; 4.2.3. SN donor ligands ; 4.3. Monocyclic Ligands ; 4.3.1. Tetraaza macrocycles ; 4.3.2. Pentaaza macrocycles ; 4.3.3. Hexaaza macrocycles ; 4.3.4. Octaaza macrocycles ; 4.3.5. Azaether macrocycle4.3.6. Azathioether macrocycle 4.3.7. Reinforced macrocycles ; 4.3.8. Macromonocyclic dicompartmental ligands ; 4.4. Isolated Dimacrocycles ; 4.5.Condensed Polymacrocyclic Ligands ; 4.5.1. Carbon and nitrogen caped amine ligands ; 4.5.2. P- As amine cage ligands4.5.3. Thioamine cage ligandsThis book surveys the relatively new area of the synthesis of organic ligands when metal ions act as a template. In the last fifty years this field has undergone an explosive development, marked by a great amount of literature. The material in the book has been arranged according to the type of chemical reaction involved. In this frame, the basic principles of metal template reactions and the shape of the molecules are considered. Designed to satisfy the demands of students, young researchers doing their PhDs, and those working in the field of coordination chemistry, the book details the roleOrganometallic compoundsSynthesisOrganic compoundsSynthesisOrganometallic compoundsSynthesis.Organic compoundsSynthesis.541.2242547.05547/.05Costisor Otilia1531949Linert W1531950MiAaPQMiAaPQMiAaPQBOOK9910782121203321Metal mediated template synthesis of ligands3777929UNINA05155nam 22006254a 450 991087778940332120200520144314.01-280-52059-097866105205963-527-60572-X3-527-60553-3(CKB)1000000000376392(EBL)481634(OCoLC)68940582(SSID)ssj0000159739(PQKBManifestationID)11155614(PQKBTitleCode)TC0000159739(PQKBWorkID)10181775(PQKB)10556167(MiAaPQ)EBC481634(EXLCZ)99100000000037639220060907d2005 uy 0engur|n|---|||||txtccrFunctional synthetic receptors /Thomas Schrader, Andrew D. Hamilton (eds.)Weinheim Wiley-VCHc20051 online resource (442 p.)Description based upon print version of record.3-527-30655-2 Includes bibliographical references and index.Functional Synthetic Receptors; Table of Contents; Preface; List of Contributors; 1 Artificial (Pseudo)peptides for Molecular Recognition and Catalysis; 1.1 Introduction; 1.2 Recognition of Biological Targets by Pseudo-peptides; 1.2.1 Introduction; 1.2.2 Polyamides as Sequence-specific DNA-minor-groove Binders; 1.2.3 Peptide Nucleic Acids; 1.2.4 Protein Recognition by (Pseudo)peptides; 1.3 Synthetic (Pseudo)peptide-based Supermolecules: From Structure to Function; 1.3.1 Catalytic (Pseudo)peptides; 1.3.2 (Pseudo)peptides Altering Membrane Permeability1.3.3 Nanoparticle- and Dendrimer-based Functional (Pseudo)peptides1.4 Combinatorial Selection of Functional (Pseudo)peptides; 1.5 Conclusions; References; 2 Carbohydrate Receptors; 2.1 Introduction; 2.2 Carbohydrate Receptors Employing Noncovalent Interactions; 2.2.1 Recognition in Organic Solvents; 2.2.2 Recognition in Two-phase Systems; 2.2.3 Carbohydrate Recognition in Water; 2.3 Receptors Employing B-O Bond Formation; 2.3.1 Carbohydrate Recognition in Water; 2.3.2 Carbohydrate Recognition in Water; References; 3 Ammonium, Amidinium, Guanidinium, and Pyridinium Cations; 3.1 Introduction3.2 Ammonium Cations3.2.1 New Receptor Structures; 3.2.2 Theoretical Investigations; 3.2.3 New Functions; 3.2.4 Peptide and Protein Recognition; 3.2.5 Conclusion and Outlook; 3.3 Amidinium Cations; 3.3.1 Introduction; 3.3.2 Artificial Receptors; 3.3.3 Conclusion; 3.4 Guanidinium Cations; 3.4.1 Introduction; 3.4.2 Artificial Receptors; 3.4.3 Conclusion; 3.5 Pyridinium Cations; 3.5.1 Introduction; 3.5.2 Artificial Receptors; 3.5.3 Conclusion; 3.6 Conclusions and Outlook; References; 4 Artificial Pyrrole-based Anion Receptors; 4.1 Introduction; 4.2 Anions in Biological Systems4.3 Cationic Pyrrole-based Receptors4.3.1 Cyclic Receptors; 4.3.2 Linear Receptors; 4.4 Neutral Pyrrole-based Anion Receptors; 4.4.1 Cyclic Receptors; 4.4.2 Linear Receptors; 4.5 Anion Carriers in Transport Applications; 4.6 Anion Sensing; 4.7 Guanidinium-based Anion Receptors; 4.8 Amide-based Anion Receptors; 4.9 Urea-based Anion Receptors; 4.10 Conclusions; Acknowledgment; References; 5 Molecular Containers in Action; 5.1 Introduction; 5.2 Variety of Molecular Containers; 5.3 Chemistry Inside Capsules; 5.3.1 Observing Unusual Species Through Encapsulation5.3.2 Changing Reaction Rates by Encapsulation5.3.3 Encapsulated Reagents; 5.4 Storage of Information Inside Capsules; 5.5 Materials and Sensors by Encapsulation; 5.5.1 Molecular Containers as Sensors and Sensing Materials; 5.5.2 Supramolecular Polymers; 5.6 Biologically Relevant Encapsulation; 5.6.1 Entrapment of Biologically Active Guests; 5.6.2 Encapsulation of Gases; 5.7 Concluding Remarks; Acknowledgment; References; 6 Formation and Recognition Properties of Dynamic Combinatorial Libraries; 6.1 Introduction; 6.2 Covalent Interactions Used in DCC Design6.2.1 Acyl Hydrazone and Imine ExchangeA timely overview of this rapidly-expanding topic, covering the most important classes of compounds and incorporating the latest literature. With its application-oriented approach, this book is the first to emphasize current and potential applications, extending to such fields as materials science, bioorganic chemistry, medicinal chemistry, and organic synthesis. In the biological context in particular, the book clarifies which receptor systems work well in water or better under physiological conditions.From the contents:* Amino Acid, Peptid and Protein Receptors* Carbohydrate ReceSupramolecular chemistryCell receptorsSupramolecular chemistry.Cell receptors.547.122635.53bclSchrader Thomas100496Hamilton Andrew D150665MiAaPQMiAaPQMiAaPQBOOK9910877789403321Functional synthetic receptors4203133UNINA