03745nam 22006375 450 99646647790331620200702092434.03-319-41069-510.1007/978-3-319-41069-2(CKB)3710000000873058(DE-He213)978-3-319-41069-2(MiAaPQ)EBC6302380(MiAaPQ)EBC5596353(Au-PeEL)EBL5596353(OCoLC)959954316(PPN)195510593(EXLCZ)99371000000087305820160930d2016 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierStochastic Porous Media Equations[electronic resource] /by Viorel Barbu, Giuseppe Da Prato, Michael Röckner1st ed. 2016.Cham :Springer International Publishing :Imprint: Springer,2016.1 online resource (IX, 202 p.) Lecture Notes in Mathematics,0075-8434 ;21633-319-41068-7 Includes bibliographical references and index.Foreword -- Preface -- Introduction -- Equations with Lipschitz nonlinearities -- Equations with maximal monotone nonlinearities -- Variational approach to stochastic porous media equations -- L1-based approach to existence theory for stochastic porous media equations -- The stochastic porous media equations in Rd -- Transition semigroups and ergodicity of invariant measures -- Kolmogorov equations -- A Two analytical inequalities -- Bibliography -- Glossary -- Translator’s note -- Index.Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.Lecture Notes in Mathematics,0075-8434 ;2163ProbabilitiesPartial differential equationsFluidsProbability Theory and Stochastic Processeshttps://scigraph.springernature.com/ontologies/product-market-codes/M27004Partial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Fluid- and Aerodynamicshttps://scigraph.springernature.com/ontologies/product-market-codes/P21026Probabilities.Partial differential equations.Fluids.Probability Theory and Stochastic Processes.Partial Differential Equations.Fluid- and Aerodynamics.519.2Barbu Viorelauthttp://id.loc.gov/vocabulary/relators/aut13745Da Prato Giuseppeauthttp://id.loc.gov/vocabulary/relators/autRöckner Michaelauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK996466477903316Stochastic Porous Media Equations2196292UNISA03602nam 2200793 450 991078111500332120231206214704.01-4426-9138-71-4426-8884-X10.3138/9781442688841(CKB)2550000000019325(OCoLC)636951359(CaPaEBR)ebrary10381936(SSID)ssj0000478694(PQKBManifestationID)11320444(PQKBTitleCode)TC0000478694(PQKBWorkID)10434826(PQKB)11377426(CaPaEBR)430836(CaBNvSL)slc00224303(DE-B1597)465381(OCoLC)1013939033(OCoLC)944176144(DE-B1597)9781442688841(Au-PeEL)EBL4672652(CaPaEBR)ebr11258308(OCoLC)958565291(VaAlCD)20.500.12592/4fskqc(MiAaPQ)EBC4672652(OCoLC)1320887070(MdBmJHUP)musev2_106176(MiAaPQ)EBC3268153(EXLCZ)99255000000001932520160923h20082008 uy 0engurcn|||||||||txtccrPostcolonial resistance culture, liberation and transformation /David JefferessToronto, [Ontario] ;Buffalo, [New York] ;London, [England] :University of Toronto Press,2008.©20081 online resource (252 p.) Cultural Spaces0-8020-9190-3 Includes bibliographical references and index.Colonial discourse/power and 'spectacular resistance' -- Opposition and the (imp)possiblity of liberation -- Gandhism and resistance: transforming India -- Reconciliation as resistance: transforming South Africa -- Conclusion: postcolonialism and transformation."Despite being central to the project of postcolonialism, the concept of resistance has received only limited theoretical examination. Writers such as Frantz Fanon, Edward Said, and Homi K. Bhaba have explored instances of revolt, opposition, or subversion, but there has been insufficient critical analysis of the concept of resistance, particularly as it relates to liberation or social and cultural transformation. In Postcolonial Resistance, David Jefferess looks to redress this critical imbalance." "Jefferess argues that interpreting resistance, as these critics have done, as either acts of opposition or practices of subversion is insufficient. He discerns in the existing critical literature an alternative paradigm for postcolonial politics, and through close analyses of the work of Mohandas Gandhi and the South African reconciliation project, Postcolonial Resistance seeks to redefine resistance to reconnect an analysis of colonial discourse to material structures of colonial exploitation and inequality."--JacketCultural spaces.PostcolonialismSocial changeRevolutionsSocial aspectsPassive resistanceElectronic books. Postcolonialism.Social change.RevolutionsSocial aspects.Passive resistance.325/.389.62bcl17.93bclJefferess David1971-1577413MiAaPQMiAaPQMiAaPQBOOK9910781115003321Postcolonial resistance3856000UNINA02233nam0 22005053i 450 VAN027460720240516120209.700N978303071127620240409d2021 |0itac50 baengCH|||| |||||Boundary integral equationsGeorge C. Hsiao, Wolfgang L. Wendland2. edChamSpringer2021xx, 783 p.ill.24 cm001VAN00237172001 Applied mathematical sciences210 Berlin [etc]Springer16465-XXNumerical analysis [MSC 2020]VANC019772MF35J25Boundary value problems for second-order elliptic equations [MSC 2020]VANC019840MF65N12Stability and convergence of numerical methods for boundary value problems involving PDEs [MSC 2020]VANC023049MF65N38Boundary element methods for boundary value problems involving PDEs [MSC 2020]VANC029156MFDifferential equationsKW:KFirst kind and second kind integral equationsKW:KFluid mechanicsKW:KFredholm alternativeKW:KFundamental solutionsKW:KGarding's InequalityKW:KGreen' s formulaeKW:KIntegral equationsKW:KMechanicsKW:KOperatorsKW:KPseudo-differential OperatorsKW:KScatteringKW:KCHChamVANL001889HsiaoGeorge C.VANV066718313294WendlandWolfgang L.VANV066719313295Springer <editore>VANV108073650ITSOL20240614RICAhttps://doi.org/10.1007/978-3-030-70956-3E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0274607BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 8165 08eMF8165 20240412 Boundary integral equations720595UNICAMPANIA