03087nam 2200781 a 450 991078070700332120200520144314.01-283-39679-3978661339679210.1515/9783110203738(CKB)2500000000002753(EBL)771211(OCoLC)751963450(SSID)ssj0000559752(PQKBManifestationID)11382728(PQKBTitleCode)TC0000559752(PQKBWorkID)10569620(PQKB)11684269(MiAaPQ)EBC771211(WaSeSS)Ind00014397(DE-B1597)33674(OCoLC)763156949(OCoLC)979749314(DE-B1597)9783110203738(Au-PeEL)EBL771211(CaPaEBR)ebr10498746(CaONFJC)MIL339679(PPN)175512892(EXLCZ)99250000000000275320110216d2011 uy 0engur|n|---|||||txtccrFeynman-Kac-type theorems and Gibbs measures on path space[electronic resource] with applications to rigorous quantum field theory /by József Lörinczi, Fumio Hiroshima, Volker BetzBerlin ;New York De Gruyterc20111 online resource (520 p.)De gruyter studies in mathamatics,0179-0986 ;34Description based upon print version of record.3-11-020148-8 3-11-020373-1 Includes bibliographical references and index.pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory.This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. De Gruyter studies in mathematics ;34.Integration, FunctionalStochastic analysisQuantum field theoryMathematicsBrownian Motion.Feynman-Kac-TypeTheorems.Gibbs Measures.Quantum Field Theory.Integration, Functional.Stochastic analysis.Quantum field theoryMathematics.515/.724SK 820rvkLörinczi József1563611Hiroshima Fumio781859Betz Volker1563612MiAaPQMiAaPQMiAaPQBOOK9910780707003321Feynman-Kac-type theorems and Gibbs measures on path space3832135UNINA