07134nam 22006972 450 991077948040332120151005020624.01-139-88875-71-139-57949-51-139-09516-11-139-57346-21-139-57092-71-139-56911-21-139-57267-91-283-63867-31-139-57001-3(CKB)2550000000707810(EBL)1025041(OCoLC)812066766(SSID)ssj0000721657(PQKBManifestationID)11421708(PQKBTitleCode)TC0000721657(PQKBWorkID)10692969(PQKB)10295068(UkCbUP)CR9781139095167(Au-PeEL)EBL1025041(CaPaEBR)ebr10608463(CaONFJC)MIL395113(MiAaPQ)EBC1025041(PPN)261287125(EXLCZ)99255000000070781020110608d2012|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierThe Road to Maxwell's demon /Meir Hemmo, Orly Shenker[electronic resource]Cambridge :Cambridge University Press,2012.1 online resource (xii, 327 pages) digital, PDF file(s)Title from publisher's bibliographic system (viewed on 05 Oct 2015).1-107-42432-1 1-107-01968-0 Includes bibliographical references and index.1. Introduction -- 2. Thermodynamics -- 2.1. The experience of asymmetry in time -- 2.2. The Law of Conservation of Energy -- 2.3. The Law of Approach to Equilibrium -- 2.4. The Second Law of Thermodynamics -- 2.5. The status of the laws of thermodynamics -- 3. Classical mechanics -- 3.1. The fundamental theory of the world -- 3.2. Introducing classical mechanics -- 3.3. Mechanical states -- 3.4. Time evolution of mechanical states -- 3.5. Thermodynamic magnitudes -- 3.6. A mechanical no-go theorem -- 3.7. The ergodic approach -- 3.8. Conclusion -- 4. Time -- 4.1. Introduction: why mechanics cannot underwrite thermodynamics -- 4.2. Classical kinematics -- 4.3. The direction of time and the direction of velocity in time -- 4.4. The description of mechanical states -- 4.5. Velocity reversal -- 4.6. Retrodiction -- 4.7. Time reversal and time-reversal invariance -- 4.8. Why the time-reversal invariance of classical mechanics matters -- 5. Macrostates -- 5.1. The physical nature of macrostates -- 5.2. How do macrostates come about? -- 5.3. Explaining thermodynamics with macrostates -- 5.4. The dynamics of macrostates -- 5.5. The physical origin of thermodynamic macrostates -- 5.6. Boltzmann's macrostates -- 5.7. Maxwell-Boltzmann distribution -- 5.8. The observer in statistical mechanics -- 5.9. Counterfactual observers -- 6. Probability -- 6.1. Introduction -- 6.2. Probability in statistical mechanics -- 6.3. Choice of measure in statistical mechanics -- 6.4. Measure of a macrostate and its probability -- 6.5. Transition probabilities without blobs -- 6.6. Dependence on observed history? -- 6.7. The spin echo experiments -- 6.8. Robustness of transition probabilities -- 6.9. No probability over initial conditions -- 7. Entropy -- 7.1. Introduction -- 7.2. Entropy -- 7.3. The distinction between entropy and probability -- 7.4. Equilibrium in statistical mechanics -- 7.5. Law of Approach to Equilibrium -- 7.6. Second Law of Thermodynamics -- 7.7. Boltzmann's H-theorem -- 7.8. Loschmidt's reversibility objection -- 7.9. Poincare's recurrence theorem -- 7.10. Boltzmann's combinatorial argument -- 7.11. Back to Boltzmann's equation: Lanford's theorem -- 7.12. Conclusion -- 8. Typicality -- 8.1. Introduction -- 8.2. The explanatory arrow in statistical mechanics -- 8.3. Typicality -- 8.4. Are there natural measures? -- 8.5. Typical initial conditions -- 8.6. Measure-1 theorems and typicality -- 8.7. Conclusion -- 9. Measurement -- 9.1. Introduction -- 9.2. What is measurement in classical mechanics? -- 9.3. Collapse in classical measurement -- 9.4. State preparation -- 9.5. The shadows approach -- 9.6. Entropy -- 9.7. Status of the observer -- 10. The past -- 10.1. Introduction -- 10.2. The problem of retrodiction -- 10.3. The Past Hypothesis: memory and measurement -- 10.4. The Reliability Hypothesis -- 10.5. Past low entropy hypothesis -- 10.6. Remembering the future -- 10.7. Problem of initial improbable state -- 10.8. The dynamics of the Past Hypothesis -- 10.9. Local and global Past Hypotheses -- 10.10. Past Hypothesis and physics of memory -- 10.11. Memory in a time-reversed universe -- 11. Gibbs -- 11.1. Introduction -- 11.2. The Gibbsian method in equilibrium -- 11.3. Gibbsian method in terms of blobs and macrostates -- 11.4. Gibbsian equilibrium probability distributions -- 11.5. The approach to equilibrium -- 12. Erasure -- 12.1. Introduction -- 12.2. Why there is no microscopic erasure -- 12.3. What is a macroscopic erasure? -- 12.4. Necessary and sufficient conditions for erasure -- 12.5. Logic and entropy -- 12.6. Another logically irreversible operation -- 12.7. Logic and entropy: a model -- 12.8. What does erasure erase? -- 12.9. Conclusion -- 13. Maxwell's Demon -- 13.1. Thermodynamic and statistical mechanical demons -- 13.2. Szilard's insight -- 13.3. Entropy reduction: measurement -- 13.4. Efficiency and predictability -- 13.5. Completing the cycle of operation: erasure -- 13.6. The Liberal Stance -- 13.7. Conclusion -- Appendix A Szilard's engine -- Appendix B Quantum mechanics -- B.1. Albert's approach -- B.2. Bohmian mechanics -- B.3. A quantum mechanical Maxwellian Demon.Time asymmetric phenomena are successfully predicted by statistical mechanics. Yet the foundations of this theory are surprisingly shaky. Its explanation for the ease of mixing milk with coffee is incomplete, and even implies that un-mixing them should be just as easy. In this book the authors develop a new conceptual foundation for statistical mechanics that addresses this difficulty. Explaining the notions of macrostates, probability, measurement, memory, and the arrow of time in statistical mechanics, they reach the startling conclusion that Maxwell's Demon, the famous perpetuum mobile, is consistent with the fundamental physical laws. Mathematical treatments are avoided where possible, and instead the authors use novel diagrams to illustrate the text. This is a fascinating book for graduate students and researchers interested in the foundations and philosophy of physics.Maxwell's demonSecond law of thermodynamicsStatistical thermodynamicsMaxwell's demon.Second law of thermodynamics.Statistical thermodynamics.536/.71Hemmo Meir1512408Shenker OrlyUkCbUPUkCbUPBOOK9910779480403321The Road to Maxwell's demon3746280UNINA