01427cam2 22003251 450 SOBE0003367120231218095855.020130529d1973 |||||ita|0103 bafreFR<<2: (>>mars 1860-mars 1866)BaudelaireParisGallimard19731149 p.18 cmBibliothèque de la Pléiade248001LAEC000151422001 *Bibliothèque de la Pléiade248001E6002000393212001 Correspondance / Baudelaire ; texte établi, présenté et annoté par Claude Pichois avec la collaboration de Jean ZieglerBaudelaire, CharlesAF00007182070131270ITUNISOB20231218RICAUNISOBUNISOB840|Coll|12|K37677UNISOB840|Coll|12|K60167UNISOB840|Coll|12|bis71580SOBE00033671M 102 Monografia moderna SBNM840|Coll|12|K000011-2SI37677acquistoNvittoriniUNISOBUNISOB20130529085709.020231218095846.0Spinosa840|Coll|12|K000011-2 bSI60167acquistoNvittoriniUNISOBUNISOB20130529085832.020231218095855.0Spinosa840|Coll|12|bis000045-2SI71580acquistoNmenleUNISOBUNISOB20160711093105.020160711093209.0menleMars 1860-mars 18661714380UNISOB02734nam 22006015 450 991076818200332120251113181203.03-0348-0625-610.1007/978-3-0348-0625-1(CKB)3710000000251253(EBL)1965089(OCoLC)893675454(SSID)ssj0001372584(PQKBManifestationID)11780204(PQKBTitleCode)TC0001372584(PQKBWorkID)11310403(PQKB)10851512(MiAaPQ)EBC1965089(DE-He213)978-3-0348-0625-1(PPN)182091481(EXLCZ)99371000000025125320141001d2014 u| 0engur|n|---|||||txtccrDecay of the Fourier Transform Analytic and Geometric Aspects /by Alex Iosevich, Elijah Liflyand1st ed. 2014.Basel :Springer Basel :Imprint: Birkhäuser,2014.1 online resource (226 p.)Description based upon print version of record.3-0348-0624-8 Includes bibliographical references and index.Foreword -- Introduction -- Chapter 1. Basic properties of the Fourier transform -- Chapter 2. Oscillatory integrals and Fourier transforms in one variable -- Chapter 3. The Fourier transform of an oscillating function -- Chapter 4. The Fourier transform of a radial function -- Chapter 5. Multivariate extensions -- Appendix -- Bibliography.The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.Mathematical analysisFourier analysisAnalysisFourier AnalysisMathematical analysis.Fourier analysis.Analysis.Fourier Analysis.510515515.2433Iosevich Alex1967-authttp://id.loc.gov/vocabulary/relators/aut1846394Liflyand Elijahauthttp://id.loc.gov/vocabulary/relators/autBOOK9910768182003321Decay of the Fourier Transform4430834UNINA