04169nam 22006015 450 991076689430332120240321230249.09789819977901981997790810.1007/978-981-99-7790-1(MiAaPQ)EBC30971115(Au-PeEL)EBL30971115(DE-He213)978-981-99-7790-1(CKB)29038516700041(EXLCZ)992903851670004120231125d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierRobust Environmental Perception and Reliability Control for Intelligent Vehicles /by Huihui Pan, Jue Wang, Xinghu Yu, Weichao Sun, Huijun Gao1st ed. 2024.Singapore :Springer Nature Singapore :Imprint: Springer,2024.1 online resource (308 pages)Recent Advancements in Connected Autonomous Vehicle Technologies,2731-0035 ;49789819977895 9819977894 Includes bibliographical references.Chapter 1. Background -- Chapter 2. Robust Environmental Perception of Multi-Sensor Data Fusion -- Chapter 3. Robust Environmental Perception of Monocular 3D Object Detection -- Chapter 4. Robust Environmental Perception of Semantic Segmentation -- Chapter 5. Robust Environmental Perception of Trajectory Prediction -- Chapter 6 Robust Environmental Perception of Multi-object Tracking -- Chapter 7. Reliability Control of Intelligent Vehicles -- References.This book presents the most recent state-of-the-art algorithms on robust environmental perception and reliability control for intelligent vehicle systems. By integrating object detection, semantic segmentation, trajectory prediction, multi-object tracking, multi-sensor fusion, and reliability control in a systematic way, this book is aimed at guaranteeing that intelligent vehicles can run safely in complex road traffic scenes. Adopts the multi-sensor data fusion-based neural networks to environmental perception fault tolerance algorithms, solving the problem of perception reliability when some sensors fail by using data redundancy. Presents the camera-based monocular approach to implement the robust perception tasks, which introduces sequential feature association and depth hint augmentation, and introduces seven adaptive methods. Proposes efficient and robust semantic segmentation of traffic scenes through real-time deepdual-resolution networks and representation separation of vision transformers. Focuses on trajectory prediction and proposes phased and progressive trajectory prediction methods that is more consistent with human psychological characteristics, which is able to take both social interactions and personal intentions into account. Puts forward methods based on conditional random field and multi-task segmentation learning to solve the robust multi-object tracking problem for environment perception in autonomous vehicle scenarios. Presents the novel reliability control strategies of intelligent vehicles to optimize the dynamic tracking performance and investigates the completely unknown autonomous vehicle tracking issues with actuator faults.Recent Advancements in Connected Autonomous Vehicle Technologies,2731-0035 ;4Automotive engineeringAutomatic controlComputational intelligenceAutomotive EngineeringControl and Systems TheoryComputational IntelligenceAutomotive engineering.Automatic control.Computational intelligence.Automotive Engineering.Control and Systems Theory.Computational Intelligence.359.8205Pan Huihui1449941MiAaPQMiAaPQMiAaPQBOOK9910766894303321Robust Environmental Perception and Reliability Control for Intelligent Vehicles3659984UNINA