05016nam 22008175 450 991076026300332120240626154906.03-031-35005-710.1007/978-3-031-35005-4(MiAaPQ)EBC30876562(Au-PeEL)EBL30876562(DE-He213)978-3-031-35005-4(CKB)28804791400041(EXLCZ)992880479140004120231108d2023 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierNumerical Fourier Analysis /by Gerlind Plonka, Daniel Potts, Gabriele Steidl, Manfred Tasche2nd ed. 2023.Cham :Springer International Publishing :Imprint: Birkhäuser,2023.1 online resource (676 pages)Applied and Numerical Harmonic Analysis,2296-5017Print version: Plonka, Gerlind Numerical Fourier Analysis Cham : Springer International Publishing AG,c2023 9783031350047 Chapter. 1. Fourier series -- Chapter. 2. Fourier transform -- Chapter. 3. Discrete Fourier transforms -- Chapter. 4. Multidimensional Fourier methods -- Chapter. 5. Fast Fourier transforms -- Chapter. 6. Chebyshev methods and fast DCT algorithms -- Chapter. 7. Fast Fourier transforms for nonequispaced data -- Chapter. 8. High dimensional FFT -- Chapter. 9. Numerical applications of DFT -- Chapter. 10. Prony method for reconstruction of structured functions -- Appendix A -- Index -- References.New technological innovations and advances in research in areas such as spectroscopy, computer tomography, signal processing, and data analysis require a deep understanding of function approximation using Fourier methods. To address this growing need, this monograph combines mathematical theory and numerical algorithms to offer a unified and self-contained presentation of Fourier analysis. The first four chapters of the text serve as an introduction to classical Fourier analysis in the univariate and multivariate cases, including the discrete Fourier transforms, providing the necessary background for all further chapters. Next, chapters explore the construction and analysis of corresponding fast algorithms in the one- and multidimensional cases. The well-known fast Fourier transforms (FFTs) are discussed, as well as recent results on the construction of the nonequispaced FFTs, high-dimensional FFTs on special lattices, and sparse FFTs. An additional chapter is devoted to discrete trigonometric transforms and Chebyshev expansions. The final two chapters consider various applications of numerical Fourier methods for improved function approximation, including Prony methods for the recovery of structured functions. This new edition has been revised and updated throughout, featuring new material on a new Fourier approach to the ANOVA decomposition of high-dimensional trigonometric polynomials; new research results on the approximation errors of the nonequispaced fast Fourier transform based on special window functions; and the recently developed ESPIRA algorithm for recovery of exponential sums, among others. Numerical Fourier Analysis will be of interest to graduate students and researchers in applied mathematics, physics, computer science, engineering, and other areas where Fourier methods play an important role in applications.Applied and Numerical Harmonic Analysis,2296-5017Fourier analysisHarmonic analysisNumerical analysisComputer scienceMathematicsAlgebras, LinearFourier AnalysisAbstract Harmonic AnalysisNumerical AnalysisMathematical Applications in Computer ScienceLinear AlgebraAnàlisi de FourierthubAnàlisi harmònicathubAnàlisi numèricathubÀlgebra linealthubLlibres electrònicsthubFourier analysis.Harmonic analysis.Numerical analysis.Computer scienceMathematics.Algebras, Linear.Fourier Analysis.Abstract Harmonic Analysis.Numerical Analysis.Mathematical Applications in Computer Science.Linear Algebra.Anàlisi de FourierAnàlisi harmònicaAnàlisi numèricaÀlgebra lineal515.2433515.2433Plonka Gerlind955746Potts Daniel1438730Steidl Gabriele1438731Tasche Manfred54571MiAaPQMiAaPQMiAaPQBOOK9910760263003321Numerical Fourier Analysis3600365UNINA