04367nam 22006855 450 991073483500332120240619143439.03-031-31186-810.1007/978-3-031-31186-4(MiAaPQ)EBC30622141(Au-PeEL)EBL30622141(DE-He213)978-3-031-31186-4(PPN)272250775(CKB)27532072700041(EXLCZ)992753207270004120230708d2023 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierTrends and Challenges in Categorical Data Analysis Statistical Modelling and Interpretation /edited by Maria Kateri, Irini Moustaki1st ed. 2023.Cham :Springer International Publishing :Imprint: Springer,2023.1 online resource (323 pages)Statistics for Social and Behavioral Sciences,2199-7365Print version: Kateri, Maria Trends and Challenges in Categorical Data Analysis Cham : Springer International Publishing AG,c2023 9783031311857 Preface -- Chapter 1. Carolyn J. Anderson, Maria Kateri and Irini Moustaki: Log-Linear and Log-Multiplicative Association Models for Categorical Data -- Chapter 2. Peter W. F. Smith: Graphical Models for Categorical Data -- Chapter 3. Tam´as Rudas and Wicher Bergsma: Marginal Models: an Overview -- Chapter 4. Jonathan J Forster and Mark E Grigsby: Bayesian Inference for Multivariate Categorical Data -- Chapter 5. Alan Agresti, Claudia Tarantola and Roberta Varriale: Simple Ways to Interpret Effects in Modeling Binary Data -- Chapter 6. Ioannis Kosmidis: Mean and median bias reduction: A concise review and application to adjacent-categories logit models -- Chapter 7. Jan Gertheiss and Gerhard Tutz: Regularization and Predictor Selection for Ordinal and Categorical Data -- Chapter 8. Mirko Armillotta, Alessandra Luati and Monia Lupparelli: An overview of ARMA-like models for count and binary data -- Chapter 9. Francesco Valentini, Claudia Pigini, and Francesco Bartolucci: Advances in maximum likelihood estimation of fixed-effects binary panel data models.This book provides a selection of modern and sophisticated methodologies for the analysis of large and complex univariate and multivariate categorical data. It gives an overview of a substantive and broad collection of topics in the analysis of categorical data, including association, marginal and graphical models, time series and fixed effects models, as well as modern methods of estimation such as regularization, Bayesian estimation and bias reduction methods, along with new simple measures for model interpretability. Methodological innovations and developments are illustrated and explained through real-world applications, together with useful R packages, allowing readers to replicate most of the analyses using the provided code. The applications span a variety of disciplines, including education, psychology, health, economics, and social sciences.Statistics for Social and Behavioral Sciences,2199-7365StatisticsPsychometricsEpidemiologyStatistical Theory and MethodsStatistics in Life Sciences, Medicine, Health SciencesPsychometricsStatistics in Engineering, Physics, Computer Science, Chemistry and Earth SciencesEpidemiologyAnàlisi multivariablethubLlibres electrònicsthubStatistics.Psychometrics.Epidemiology.Statistical Theory and Methods.Statistics in Life Sciences, Medicine, Health Sciences.Psychometrics.Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences.Epidemiology.Anàlisi multivariable519.535519.535Kateri Maria721771Moustaki Irini522145MiAaPQMiAaPQMiAaPQBOOK9910734835003321Trends and Challenges in Categorical Data Analysis3404481UNINA