04070nam 22006495 450 991072893090332120240619101849.03-031-20409-310.1007/978-3-031-20409-8(MiAaPQ)EBC30589503(Au-PeEL)EBL30589503(DE-He213)978-3-031-20409-8(PPN)272261009(CKB)26869083000041(EXLCZ)992686908300004120230607d2023 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMultiscale Model Reduction Multiscale Finite Element Methods and Their Generalizations /by Eric Chung, Yalchin Efendiev, Thomas Y. Hou1st ed. 2023.Cham :Springer International Publishing :Imprint: Springer,2023.1 online resource (499 pages)Applied Mathematical Sciences,2196-968X ;212Print version: Chung, Eric Multiscale Model Reduction Cham : Springer International Publishing AG,c2023 9783031204081 Introduction -- Homogenization and Numerical Homogenization of Linear Equations -- Local Model Reduction: Introduction to Multiscale Finite Element Methods -- Generalized Multiscale Finite Element Methods: Main Concepts and Overview -- Adaptive Strategies -- Selected Global Formulations for GMsFEM and Energy Stable Oversampling -- GMsFEM Using Sparsity in the Snapshot Spaces -- Space-time GMsFEM -- Constraint Energy Minimizing Concepts -- Non-local Multicontinua Upscaling -- Space-time GMsFEM -- Multiscale Methods for Perforated Domains -- Multiscale Stabilization -- GMsFEM for Selected Applications -- Homogenization and Numerical Homogenization of Nonlinear Equations -- GMsFEM for Nonlinear Problems -- Nonlinear Non-local Multicontinua Upscaling -- Global-local Multiscale Model Reduction Using GMsFEM -- Multiscale Methods in Temporal Splitting. Efficient Implicit-explicit Methods for Multiscale Problems -- References -- Index.This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.Applied Mathematical Sciences,2196-968X ;212Numerical analysisMathematics—Data processingMathematical physicsNumerical AnalysisComputational Science and EngineeringTheoretical, Mathematical and Computational PhysicsModelització multiescalathubLlibres electrònicsthubNumerical analysis.Mathematics—Data processing.Mathematical physics.Numerical Analysis.Computational Science and Engineering.Theoretical, Mathematical and Computational Physics.Modelització multiescala511.8511.8Chung Eric1365639Efendiev Yalchin472316Hou Thomas Y504781MiAaPQMiAaPQMiAaPQBOOK9910728930903321Multiscale Model Reduction3387810UNINA