01266oam 2200373 450 991071713660332120220207111010.0(CKB)5470000002528852(OCoLC)1295433027(OCoLC)995470000002528852(EXLCZ)99547000000252885220220207d2022 ua 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierFor the relief of Victoria Galindo Lopez report (to accompany H.R. 187) (including cost estimate of the Congressional Budget Office)[Washington, D.C.] :[U. S. Government Publishing Office],2022.1 online resource (6 pages)Report / 117th Congress, 2d session, House of Representatives ;117-236"February 1, 2022."Includes bibliographical references.For the relief of Victoria Galindo Lopez NoncitizensUnited StatesLegislative materials.lcgftNoncitizensGPOGPOGPOBOOK9910717136603321For the relief of Victoria Galindo Lopez3469673UNINA05448nam 22006494a 450 991083013370332120230828213320.01-280-44838-597866104483880-470-00967-50-470-00966-7(CKB)1000000000355635(EBL)257544(OCoLC)475973641(SSID)ssj0000212012(PQKBManifestationID)11174860(PQKBTitleCode)TC0000212012(PQKBWorkID)10136427(PQKB)11634071(MiAaPQ)EBC257544(EXLCZ)99100000000035563520051202d2006 uy 0engur|n|---|||||txtccrNonparametric regression methods for longitudinal data analysis[electronic resource] [mixed-effects modeling approaches] /Hulin Wu, Jin-Ting ZhangHoboken, N.J. Wiley-Intersciencec20061 online resource (401 p.)Wiley series in probability and statisticsSubtitle from cover.0-471-48350-8 Includes bibliographical references (p. 347-361) and index.Nonparametric Regression Methods for Longitudinal Data Analysis; Preface; Contents; Acronyms; 1 Introduction; 1.1 Motivating Longitudinal Data Examples; 1.1.1 Progesterone Data; 1.1.2 ACTG 388 Data; 1.1.3 MACS Data; 1.2 Mixed-Effects Modeling: from Parametric to Nonparametric; 1.2.1 Parametric Mixed-Effects Models; 1.2.2 Nonparametric Regression and Smoothing; 1.2.3 Nonparametric Mixed-Effects Models; 1.3 Scope of the Book; 1.3.1 Building Blocks of the NPME Models; 1.3.2 Fundamental Development of the NPME Models; 1.3.3 Further Extensions of the NPME Models1.4 Implementation of Methodologies1.5 Options for Reading This Book; 1.6 Bibliographical Notes; 2 Parametric Mixed-Effects Models; 2.1 Introduction; 2.2 Linear Mixed-Effects Model; 2.2.1 Model Specification; 2.2.2 Estimation of Fixed and Random-Effects; 2.2.3 Bayesian Interpretation; 2.2.4 Estimation of Variance Components; 2.2.5 The EM-Algorithms; 2.3 Nonlinear Mixed-Effects Model; 2.3.1 Model Specification; 2.3.2 Two-Stage Method; 2.3.3 First-Order Linearization Method; 2.3.4 Conditional First-Order Linearization Method; 2.4 Generalized Mixed-Effects Model2.4.1 Generalized Linear Mixed-Effects Model2.4.2 Examples of GLME Model; 2.4.3 Generalized Nonlinear Mixed-Effects Model; 2.5 Summary and Bibliographical Notes; 2.6 Appendix: Proofs; 3 Nonparametric Regression Smoothers; 3.1 Introduction; 3.2 Local Polynomial Kernel Smoother; 3.2.1 General Degree LPK Smoother; 3.2.2 Local Constant and Linear Smoothers; 3.2.3 Kernel Function; 3.2.4 Bandwidth Selection; 3.2.5 An Illustrative Example; 3.3 Regression Splines; 3.3.1 Truncated Power Basis; 3.3.2 Regression Spline Smoother; 3.3.3 Selection of Number and Location of Knots3.3.4 General Basis-Based Smoother3.4 Smoothing Splines; 3.4.1 Cubic Smoothing Splines; 3.4.2 General Degree Smoothing Splines; 3.4.3 Connection between a Smoothing Spline and a LME Model; 3.4.4 Connection between a Smoothing Spline and a State-Space Model; 3.4.5 Choice of Smoothing Parameters; 3.5 Penalized Splines; 3.5.1 Penalized Spline Smoother; 3.5.2 Connection between a Penalized Spline and a LME Model; 3.5.3 Choice of the Knots and Smoothing Parameter Selection; 3.5.4 Extension; 3.6 Linear Smoother; 3.7 Methods for Smoothing Parameter Selection; 3.7.1 Goodness of Fit3.7.2 Model Complexity3.7.3 Cross-Validation; 3.7.4 Generalized Cross-Validation; 3.7.5 Generalized Maximum Likelihood; 3.7.6 Akaike Information Criterion; 3.7.7 Bayesian Information Criterion; 3.8 Summary and Bibliographical Notes; 4 Local Polynomial Methods; 4.1 Introduction; 4.2 Nonparametric Population Mean Model; 4.2.1 Naive Local Polynomial Kernel Method; 4.2.2 Local Polynomial Kernel GEE Method; 4.2.3 Fan-Zhang 's Two-step Method; 4.3 Nonparametric Mixed-Effects Model; 4.4 Local Polynomial Mixed-Effects Modeling; 4.4.1 Local Polynomial Approximation; 4.4.2 Local Likelihood Approach4.4.3 Local Marginal Likelihood EstimationIncorporates mixed-effects modeling techniques for more powerful and efficient methodsThis book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented.With its logical structure and organization, beginning with basic principles, the text develops tWiley series in probability and statistics.Nonparametric statisticsLongitudinal methodMathematical modelsNonparametric statistics.Longitudinal methodMathematical models.519.5/4519.54Wu Hulin1653704Zhang Jin-Ting1964-1689680MiAaPQMiAaPQMiAaPQBOOK9910830133703321Nonparametric regression methods for longitudinal data analysis4064913UNINA