01870nam 2200457 450 991071696290332120211209080153.0(CKB)5470000002526566(OCoLC)1285606100(EXLCZ)99547000000252656620211118d2021 ua 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierCyanobacteria, cyanotoxin synthetase gene, and cyanotoxin occurrence among selected large river sites of the conterminous United States, 2017--18 /by Robert E. Zuellig [and four others]Reston, Virginia :U.S. Department of the Interior, U.S. Geological Survey,2021.1 online resource (v, 22 pages) illustrations (some color), color mapScientific investigations report,2328-0328 ;2021-5121"National Water Quality Program."Includes bibliographical references (pages 19-22).CyanobacteriaEcologyUnited StatesCyanobacterial toxinsUnited StatesBacterial pollution of waterUnited StatesWaterPollutionUnited StatesWater qualityMeasurementCyanobacteriaEcologyCyanobacterial toxinsBacterial pollution of waterWaterPollutionWater qualityMeasurement.Zuellig Robert E.1387746Geological Survey (U.S.),National Water-Quality Assessment Program (U.S.)GPOGPOBOOK9910716962903321Cyanobacteria, cyanotoxin synthetase gene, and cyanotoxin occurrence among selected large river sites of the conterminous United States, 2017--183442825UNINA03093nam 2200481 450 991079329630332120220528000051.01-4704-4819-X(CKB)4100000007133850(MiAaPQ)EBC5571103(Au-PeEL)EBL5571103(OCoLC)1042567976(RPAM)20701218(PPN)231946198(EXLCZ)99410000000713385020220528d2018 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierA Morse-Bott approach to monopole Floer homology and the triangulation conjecture /Francesco LinProvidence, Rhode Island :American Mathematical Society,[2018]©20181 online resource (174 pages)Memoirs of the American Mathematical Society ;Volume 255, Number 12211-4704-2963-2 Includes bibliographical references.Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Basic setup -- 2.1. The monopole equations -- 2.2. Blowing up the configuration spaces -- 2.3. Completion and slices -- 2.4. Perturbations -- Chapter 3. The analysis of Morse-Bott singularities -- 3.1. Hessians and Morse-Bott singularities -- 3.2. Moduli spaces of trajectories -- 3.3. Transversality -- 3.4. Compactness and finiteness -- 3.5. Gluing -- 3.6. The moduli space on a cobordism -- Chapter 4. Floer homology for Morse-Bott singularities -- 4.1. Homology of smooth manifolds via stratified spaces -- 4.2. Floer homology -- 4.3. Invariance and functoriality -- Chapter 5. \Pin-monopole Floer homology -- 5.1. An involution in the theory -- 5.2. Equivariant perturbations and Morse-Bott transversality -- 5.3. Invariant chains and Floer homology -- 5.4. Some computations -- 5.5. Manolescu's invariant and the Triangulation conjecture -- Bibliography -- Back Cover.In the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a {\rm spin}^c structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture.Memoirs of the American Mathematical Society ;Volume 255, Number 1221.Morse Bott approach to monopole Floer homology and the triangulation conjectureTriangulationTriangulation.526.32Lin Francesco1988-1544049MiAaPQMiAaPQMiAaPQBOOK9910793296303321A Morse-Bott approach to monopole Floer homology and the triangulation conjecture3797933UNINA