01952nam0 2200361 i 450 VAN007362920221121125251.22598-10-21087-620100128d1992 |0itac50 baengSG|||| |||||Nonlinear kinetic theory and mathematical aspects of hyperbolic systemVinicio C. Boffi, Franco Bampi, Giuseppe Toscani editorsSingaporeWorld scientific1992XI, 267 p.23 cm.001VAN00270892001 Series on advances in mathematics for applied sciences210 SingaporeWorld scientific.935LxxHyperbolic equations and hyperbolic systems [MSC 2020]VANC022749MF82C40Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]VANC023377MF82B40Kinetic theory of gases in equilibrium statistical mechanics [MSC 2020]VANC029247MFSGSingaporeVANL000061BampiFrancoVANV059037BoffiVinicio C.VANV059036ToscaniGiuseppeVANV039503World scientificVANV108634650Boffi, V.C.Boffi, Vinicio C.VANV061866Boffi, V. C.Boffi, Vinicio C.VANV059357ITSOL20221125RICA/sebina/repository/catalogazione/documenti/Boffi, Bampi, Toscani - Nonlinear kinetic theory and mathematical aspects of hyperbolic systems.pdfBoffi, Bampi, Toscani - Nonlinear kinetic theory and mathematical aspects of hyperbolic systems.pdfBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08VAN0073629BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 82-XX 0482 08 8780 I 20101022 Nonlinear kinetic theory and mathematical aspects of hyperbolic system1415121UNISOB01600nam 2200409 450 991070782380332120161230132459.0(CKB)5470000002468323(OCoLC)967397215(EXLCZ)99547000000246832320161230j201510 ua 0chiurmn|||||||||txtrdacontentcrdamediacrrdacarrierDian li kuo rong jian mo, fen xi yu ke shi hua xuan ding de gao zai sheng neng yuan jian mo jing yan hui zong /Nate Blair [and three others]Golden, CO :Guo jia ke zai sheng neng yuan shi yan shi,2015 nian 10 yue.1 online resource (vii, 35 pages) color illustrationsJi shu bao gao =NREL/TP ;6A20-66727"2015 nian 10 yue."Includes bibliographical references (pages 27-29 ).Dian li kuo rong jian mo, fen xi yu ke shi hua Renewable resource integrationChinaRenewable resource integrationChinaMathematical modelsElectric power systemsChinaMathematical modelsRenewable resource integrationRenewable resource integrationMathematical models.Electric power systemsMathematical models.Blair Nate1382980National Renewable Energy Laboratory (U.S.),GPOGPOBOOK9910707823803321Dian li kuo rong jian mo, fen xi yu ke shi hua3519362UNINA