06445nam 22004093 450 991063249950332120221112060215.01-119-80107-91-119-80106-0(MiAaPQ)EBC7134078(Au-PeEL)EBL7134078(CKB)25299356200041(EXLCZ)992529935620004120221112d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierModern Automotive Electrical SystemsNewark :John Wiley & Sons, Incorporated,2022.©2022.1 online resource (255 pages)Print version: Asef, Pedram Modern Automotive Electrical Systems Newark : John Wiley & Sons, Incorporated,c2022 9781119801047 Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 General Introduction and Classification of Electrical Powertrains -- 1.1 Introduction -- 1.2 Worldwide Background for Change -- 1.3 Influence of Electric Vehicles on Climate Change -- 1.4 Mobility Class Based on Experience in the Netherlands (Based on EU Model) -- 1.5 Type-Approval Procedure -- 1.6 Torque-Speed Characteristic of the Powertrain for Mobility Vehicles -- 1.7 Methods of Field Weakening Without a Clear Definition -- 1.8 Consideration and Literature Concerning "Electronic" Field Weakening: What Does it Mean? -- 1.9 Summary of Electronic Field Weakening Definitions -- 1.10 Critical Study of Field Weakening Definitions -- 1.11 Motor Limits -- 1.12 Concluding Remarks -- References -- Chapter 2 Comparative Analyses of the Response of Core Temperature of a Lithium Ion Battery under Various Drive Cycles -- 2.1 Introduction -- 2.2 Thermal Modeling -- 2.3 Methodology -- 2.4 Simulation Results -- 2.5 Conclusions -- References -- Chapter 3 Classification and Assessment of Energy Storage Systems for Electrified Vehicle Applications: Modelling, Challenges, and Recent Developments -- 3.1 Introduction -- 3.2 Backgrounds -- 3.2.1 EV Classifications -- 3.2.2 EV Charging/Discharging Strategies -- 3.2.2.1 Uncontrolled Charge and Discharge Strategies -- 3.2.2.2 Controlled Charge and Discharge Strategies -- 3.2.2.3 Wireless Charging of EV -- 3.2.3 Classification of ESSs in EVs -- 3.3 Modeling of ESSs Applied in EVs -- 3.3.1 Mechanical Energy Storages -- 3.3.1.1 Flywheel Energy Storages -- 3.3.2 Electrochemical Energy Storages -- 3.3.2.1 Flow Batteries -- 3.3.2.2 Secondary Batteries -- 3.3.3 Chemical Storage Systems -- 3.3.4 Electrical Energy Storage Systems -- 3.3.4.1 Ultracapacitors -- 3.3.4.2 Superconducting Magnetic -- 3.3.5 Thermal Storage Systems -- 3.3.6 Hybrid Storage Systems.3.3.7 Modeling Electrical Behavior -- 3.3.8 Modeling Thermal Behavior -- 3.3.9 SOC Calculation -- 3.4 Characteristics of ESSs -- 3.5 Application of ESSs in EVs -- 3.6 Methodologies of Calculating the SOC -- 3.6.1 Current-Based SOC Calculation Approach -- 3.6.2 Voltage-Based SOC Calculation Approach -- 3.6.3 Extended Kalman-Filter-Based SOC Calculation Approach -- 3.6.4 SOC Calculation Approach Based on the Transient Response Characteristics -- 3.6.5 Fuzzy Logic -- 3.6.6 Neural Networks -- 3.7 Estimation of Battery Power Availability -- 3.7.1 PNGV HPPC Power Availability Estimation Approach -- 3.7.2 Revised PNGV HPPC Power Availability Estimation Approach -- 3.7.3 Power Availability Estimation Based on the Electrical Circuit Equivalent Model -- 3.8 Life Prediction of Battery -- 3.8.1 Aspects of Battery Life -- 3.8.1.1 Temperature -- 3.8.1.2 Depth of Discharge -- 3.8.1.3 Charging/Discharging Rate -- 3.8.2 Battery Life Prediction Approaches -- 3.8.2.1 Physic-Chemical Aging Method -- 3.8.2.2 Event-Oriented Aging Method -- 3.8.2.3 Lifetime Prediction Method Based on SOL -- 3.8.3 RUL Prediction Methods -- 3.8.3.1 Machine Learning Methods -- 3.8.3.2 Adaptive Filter Methods -- 3.8.3.3 Stochastic Process Methods -- 3.9 Recent Trends, Future Extensions, and Challenges of ESSs in EV Implementations -- 3.10 Government Policy Challenges for EVs -- 3.11 Conclusion -- References -- Chapter 4 Thermal Management of the Li-Ion Batteries to Improve the Performance of the Electric Vehicles Applications -- 4.1 Introduction -- 4.2 The Objective of the Research -- 4.3 Electric Vehicles Trend -- 4.4 Thermal Management of the Li-Ion Batteries -- 4.4.1 Internal Battery Thermal Management System -- 4.4.2 External Battery Thermal Management System -- 4.4.2.1 Active Cooling Systems -- 4.4.2.2 Passive Cooling Systems -- 4.5 Lifetime Performance of Li-Ion Batteries.4.5.1 Why Do Batteries Age? -- 4.5.2 Characterisation Techniques of Aging -- 4.5.3 Lifetime Tests Protocols of the Li-Ion Batteries -- 4.5.4 Lifetime Results of Different Li-Ion Technologies -- 4.6 Basic Aspects of Safety and Reliability Evaluation of EVs -- 4.6.1 Concept Reliability Analysis of Battery Pack from Thermal Aspects -- 4.6.2 Reliability Assessment of the Li-Ion Battery at High and Low Temperatures -- 4.7 Conclusion -- References -- Chapter 5 Fault Detection and Isolation in Electric Vehicle Powertrain -- 5.1 Introduction -- 5.1.1 EV Powertrain Configurations -- 5.1.1.1 Battery Electric Vehicle (BEV) -- 5.1.1.2 Hybrid Electric Vehicle (HEV) -- 5.1.1.3 Fuel Cell Electric Vehicle (FCEV) -- 5.1.2 EV Powertrain Technologies -- 5.1.2.1 Energy Storage System -- 5.1.2.2 Electric Motor -- 5.1.2.3 Power Electronics -- 5.2 Battery Fault Diagnosis -- 5.2.1 Battery Management System (BMS) -- 5.2.2 Model-Based FDI Approach -- 5.2.2.1 Battery Modelling -- 5.2.3 Signal Processing-Based FDI Approach -- 5.2.3.1 State of Charge (SOC) Estimation -- 5.2.3.2 State of Health Estimation -- 5.3 Electric Motor Fault Diagnosis -- 5.3.1 Electric Motor Faults -- 5.3.1.1 Mechanical Fault -- 5.3.1.2 Electrical Fault -- 5.3.2 Signal Processing-Based FDI Approach -- 5.3.2.1 Motor Current Signature Analysis (MSCA) -- 5.4 Power Electronics Fault Diagnosis -- 5.4.1 Signal Processing-Based FDI Approach -- 5.4.1.1 Open Switch Fault -- 5.4.1.2 Short Switch Fault -- 5.5 Conclusions -- References -- Index -- EULA.Asef Pedram1268398Sanjeevikumar P1268399Lapthorn Andrew1268400MiAaPQMiAaPQMiAaPQBOOK9910632499503321Modern Automotive Electrical Systems2983131UNINA02305oam 2200601 450 991070652140332120180118081003.0(CKB)5470000002457236(OCoLC)1015251483(OCoLC)995470000002457236(EXLCZ)99547000000245723620171212j198202 ua 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierFinal results of the hydrogen igniter experimental program /prepared by W. E. Lowry, B. R. Bowman, B. W. DavisWashington, D.C. :Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission,February 1982.1 online resource (ix, 51 pages) illustrations"NUREG/CR-2486; UCRL-53036; R-4.""Manuscript completed: November 1981; date published: February 1982.""Lawrence Livermore National Laboratory."Includes bibliographical references (pages 41-42).Nuclear reactor kineticsNuclear reactorsMaterialsThermal propertiesNuclear reactorsContainmentNuclear pressure vesselsTestingNuclear pressure vesselsTestingfastNuclear reactor kineticsfastNuclear reactorsContainmentfastNuclear reactorsMaterialsThermal propertiesfastNuclear reactor kinetics.Nuclear reactorsMaterialsThermal properties.Nuclear reactorsContainment.Nuclear pressure vesselsTesting.Nuclear pressure vesselsTesting.Nuclear reactor kinetics.Nuclear reactorsContainment.Nuclear reactorsMaterialsThermal properties.Lowry W. E.1421463Bowman B. R.Davis B. W.U.S. Nuclear Regulatory Commission.Office of Nuclear Reactor Regulation,GPOGPOOCLCFMERUCGPOBOOK9910706521403321Final results of the hydrogen igniter experimental program3542807UNINA01128nam0-2200277 --450 991088549910332120240913113222.020240913d1959----kmuy0itay5050 baitaIT 001yyCarta della precipitazione media annua in Italia per il trentennio 1921-1950precipitazioni medie mensili ed annue e numero dei giorni piovosi per il trentennio 1921-1950Ministero dei lavori pubblici Consiglio superiore servizio idrograficoCartografia RiccardiScala 1: 1000000RomaStab. grafico Garzanti19591 carta pluviometrica in cartellacolore100x125 cm, ripiegata a 32 cm.Precipitazioni atmosfericheItalia1921-1950551.523itaServizio idrografico289889Cartografia Riccardi180ITUNINAREICATUNIMARCBK9910885499103321A AGR 60211698/2024FAGBCFAGBCCarta della precipitazione media annua in Italia per il trentennio 1921-1950121534UNINA