02470oam 2200529 450 991070498660332120170203084756.0(CKB)5470000002445876(OCoLC)866822981(OCoLC)995470000002445876(EXLCZ)99547000000244587620131226j201305 ua 0engurcn|||||||||txtrdacontentcrdamediacrrdacarrierFeasibility study of economics and performance of solar photovoltaics at the Price Landfill Site in Pleasantville, New Jersey a study prepared in partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative, siting renewable energy on potentially contaminated land and mine sites /James Salasovich [and three others]Golden, CO :National Renewable Energy Laboratory,May 2013.1 online resource (vii, 47 pages) color illustrationsNREL/TP ;7A40-58480Title from title screen (viewed on Dec. 26, 2013)."May 2013."Includes bibliographical references.Feasibility study of economics and performance of solar photovoltaics at the Price Landfill Site in Pleasantville, New Jersey Photovoltaic power systemsNew JerseyPleasantville (Atlantic County)PlanningSolar power plantsLocationNew JerseyPleasantville (Atlantic County)PlanningPhotovoltaic power generationNew JerseyPleasantville (Atlantic County)FinanceBrownfieldsNew JerseyPleasantville (Atlantic County)Reclamation of landNew JerseyPleasantville (Atlantic County)Photovoltaic power systemsPlanning.Solar power plantsLocationPlanning.Photovoltaic power generationFinance.BrownfieldsReclamation of landSalasovich James1387298National Renewable Energy Laboratory (U.S.),United States.Environmental Protection Agency,SOESOEOCLCOOCLCQGPOBOOK9910704986603321Feasibility study of economics and performance of solar photovoltaics at the Price Landfill Site in Pleasantville, New Jersey3515794UNINA09157nam 22005773 450 991058333520332120240505191923.00-12-803706-70-12-803687-7(CKB)3710000001041913(MiAaPQ)EBC4792676(EXLCZ)99371000000104191320210428d2017 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierCellular Actuators Modularity and Variability in Muscle-Inspired ActuationOxford :Elsevier Science & Technology,2017.©2017.1 online resource (384 pages)Front Cover -- Cellular Actuators -- Copyright -- Contents -- List of gures -- List of tables -- Introduction -- About this book -- Motivation for biologically inspired actuation -- Biological muscles and arti cial muscle-type actuators -- Cellular architecture -- Outline of this book -- Acknowledgment -- Historical overview -- Soft robots for unstructured environments -- Robot actuators -- Redundant actuators -- Generation of natural movements -- Cellular actuator concept -- Inspiration from biological muscles -- Binary control of an actuator array -- Broadcast feedback with stochastic recruitment -- Discussion -- 1 Structure of cellular actuators -- 1.1 Strain ampli ed piezoelectric actuators -- 1.1.1 Piezoelectric materials -- 1.1.2 Strain ampli cation mechanisms -- 1.1.3 MEMS-PZT cellular actuator -- 1.1.4 Discussion -- 1.2 Nested rhombus exponential strain ampli cation -- 1.2.1 Large effective strain piezoelectric actuators -- 1.2.2 Rhombus strain ampli cation mechanisms -- 1.2.3 Nested rhombus structure -- 1.2.4 Properties of ideal nested rhombus PZT actuators -- 1.2.5 Feasibility check for 20% effective strain -- 1.2.6 Discussion -- 1.3 Design of nested-rhombus cellular actuators -- 1.3.1 Nested rhombus mechanisms with structural exibility -- 1.3.2 Veri cation and calibration of 3-spring lumped parameter model -- 1.3.3 Prototype two-layer actuator unit -- 1.3.4 Contractile two-layer mechanism design -- 1.3.5 Tweezer-style piezoelectric end-effector -- 1.3.6 Three-layer rhomboidal mechanism design and its application to a camera positioning mechanism -- 1.3.7 Discussion -- 2 Modeling of cellular actuators -- 2.1 Two-port networks for single cell modeling -- 2.1.1 Why a more involved model is necessary -- 2.1.2 Two-port models of strain amplifying compliant mechanisms.2.1.3 Finding expressions for the immittance parameters using Castigliano's theorem -- 2.1.4 Connecting strain ampli ers and ampli ed stacks together -- 2.1.5 Effectiveness of multiple layers and gures of merit -- 2.1.6 Amplifying still further with additional strain amplifying mechanisms -- 2.1.7 Discussion -- 2.2 Calibration of two-port network models -- 2.2.1 Model validation by nite element methods -- 2.2.2 Experimental results -- 2.2.3 Discussion -- 2.3 Modeling of actuator arrays: the nesting theorem: three-layer structure -- 2.3.1 Actuator compliance for nested ampli ed piezoelectric actuators -- 2.3.2 Antagonist pairs of compliant actuators -- 2.3.3 The rst and second nesting theorem: evaluating the perceived stiffness based on the stiffness of each layer -- 2.3.4 The three-layer structure -- 2.3.5 Discussion -- 2.4 Representation and characterization of complex actuator arrays -- 2.4.1 Graph-theoretic modeling -- 2.4.2 Cell -- 2.4.3 Connecting structures -- 2.4.4 Incidence matrices -- 2.4.5 Fingerprint method basics -- 2.4.6 Fingerprint-to-incidence matrix relationship -- 2.4.7 Automatic generation of actuator array topologies -- 2.4.8 Incidence matrix identity and similarity transforms -- 2.4.9 Robustness analysis -- 2.4.10 Discussion -- 3 Control of cellular actuators -- 3.1 Minimum switching discrete switching vibration suppression -- 3.1.1 Control strategies for exible mechatronic systems -- 3.1.2 Open-loop switching control methods -- 3.1.3 Redundantly actuated two-layer exible cellular actuator -- 3.1.4 Determination of switching pattern -- 3.1.5 Illustrative example of switching algorithm -- 3.1.6 Experimental setup -- 3.1.7 Experimental results -- 3.1.8 Non-ideal effects and command robustness -- 3.1.9 Discussion -- 3.2 Broadcast control for cellular actuator arrays -- 3.2.1 Cellular control system.3.2.2 Broadcast feedback for cellular control system -- 3.2.3 Stability analysis of broadcast feedback -- 3.2.4 Simulation: uniform cellular array -- 3.2.5 Simulation: non-uniform cellular array -- 3.2.6 Discussion -- 3.3 Hysteresis loop control of hysteretic actuator arrays -- 3.3.1 Segmented binary control for hysteretic cellular actuator units -- 3.3.2 Implementation of hysteresis loop control of an SMA unit -- 3.3.3 Transition probability distribution and hysteresis loop -- 3.3.4 Localized stochastic transition -- 3.3.5 Broadcast control approach to the coordination of hysteric cellular actuator array -- 3.3.6 Centralized cell coordination -- 3.3.7 Simulation environment -- 3.3.8 Simulation results -- 3.3.9 Discussion -- 3.4 Supermartingale theory for broadcast control of distributed hysteretic systems -- 3.4.1 Anonymous control and stochastic recruitment -- 3.4.2 System representation -- 3.4.3 Aggregate state, internal dynamics, and observability -- 3.4.4 Control -- 3.4.5 Simulation -- 3.4.6 Robustness against cell failures -- 3.4.7 Contribution of preloading and refraction rule -- 3.4.8 Discussion -- 3.5 Signal-dependent variability of actuator arrays with oating-point quantization -- 3.5.1 Motor noise and cellular actuation -- 3.5.2 Floating-point quantization of cellular actuator arrays -- 3.5.3 Numerical example -- 3.5.4 Discussion -- 4 Application of cellular actuators -- 4.1 Variable stiffness cellular actuators -- 4.1.1 Variable stiffness actuators -- 4.1.2 Design of variable stiffness cellular architecture -- 4.1.3 Tunable resonant frequencies -- 4.1.4 Implementation of a PZT-based VSCA -- 4.1.5 Experimental results -- 4.1.6 Discussion -- 4.2 Bipolar buckling actuators -- 4.2.1 Strain ampli cation by structural buckling -- 4.2.2 Buckling for large displacement ampli cation -- 4.2.3 Redirecting stiffness.4.2.4 Dual buckling unit mechanism -- 4.2.5 Force-displacement analysis -- 4.2.6 Dynamic bipolar motion -- 4.2.7 Prototyping buckling actuators -- 4.2.8 Static performance -- 4.2.9 Dynamic performance -- 4.2.10 Discussion -- 4.3 Self-sensing piezoelectric grasper -- 4.3.1 Self-sensing of ampli ed PZT actuators -- 4.3.2 Force magni cation for tweezer-style piezoelectric end-effector -- 4.3.3 Mechanical modeling -- 4.3.4 Combined electromechanical model of the tweezer device -- 4.3.5 On-site calibration procedure -- 4.3.6 Electrical circuit -- 4.3.7 Results -- 4.3.8 Discussion -- 4.4 Biologically inspired robotic camera orientation system -- 4.4.1 Robotic realization of saccades and smooth-pursuit -- 4.4.2 Dynamics-based oculomotor-visual coordination in rapid camera movements -- 4.4.3 Switching control of camera positioner -- 4.4.4 Dynamics-based blur kernel estimation for motion de-blurring -- 4.4.5 Dynamics-based fast panoramic image stitching -- 4.4.6 Discussion -- 5 Conclusion -- 5.1 Summary and future directions -- 5.1.1 Brief summary -- 5.1.2 Future work -- Nomenclature -- Appendix -- A.1 Modeling of hysteresis -- A.1.1 Hysteresis in piezoelectric actuators -- A.1.2 Hysteresis modeling -- A.2 Structural parameters of tweezer-style end-effector -- A.3 Piezoelectric driving circuit and control system -- A.3.1 Cédrat charge ampli ers -- A.3.2 Discrete switching piezoelectric drive circuit -- A.3.3 Hardware con guration of real-time controller -- A.4 Compliance matrix elements in Section 2.2 -- A.5 SMA cellular actuators -- A.5.1 SMA cellular actuator design -- A.5.2 Damped SMA array -- A.5.3 Dynamic SMA array -- A.5.4 Implementation of oating-point quantization into dynamic SMA actuator array -- A.5.5 Robotic arm with SMA cellular actuators -- A.6 Deterministic analysis and stability of expectation -- A.7 Proof of Lemma 2 in Section 3.4.A.8 Recursive computation of probability Pr(Xt|X0) -- A.9 Proof of Lemma 2 in Section 4.1 -- Bibliography -- Index -- Back Cover.ActuatorsDesign and constructionPiezoelectric devicesRoboticsActuatorsDesign and constructionfast(OCoLC)fst00796348Piezoelectric devicesfast(OCoLC)fst01063922Roboticsfast(OCoLC)fst01098997ActuatorsDesign and construction.Piezoelectric devices.Robotics.ActuatorsDesign and construction.Piezoelectric devices.Robotics.621621Ueda Jun1744829Schultz Joshua A1744830Asada Harry1744831MiAaPQMiAaPQMiAaPQBOOK9910583335203321Cellular Actuators4175136UNINA