10991nam 2200721 450 991014357720332120221206235305.01-280-46844-097866104684470-470-24780-00-471-79253-50-471-79252-710.1002/0471792535(CKB)1000000000355444(EBL)261366(SSID)ssj0000248145(PQKBManifestationID)11923268(PQKBTitleCode)TC0000248145(PQKBWorkID)10200003(PQKB)11126607(MiAaPQ)EBC261366(CaBNVSL)mat05988896(IDAMS)0b00006481624699(IEEE)5988896(PPN)257784632(OCoLC)85820984(EXLCZ)99100000000035544420151221d2006 uy engur|n|---|||||txtccrSoftware measurement and estimation a practical approach /Linda M. Laird, M. Carol BrennanHoboken, New Jersey :John Wiley & Sons,2006[Piscataqay, New Jersey] :IEEE Xplore,[2006]1 online resource (276 p.)Quantitative software engineering series ;2Description based upon print version of record.0-471-67622-5 Includes bibliographical references and index.Acknowledgments -- 1. Introduction -- 1.1 Objective -- 1.2 Approach -- 1.3 Motivation -- 1.4 Summary -- References -- Chapter 1 Side Bar -- 2. What to Measure -- 2.1 Method 1: The Goal Question Metrics Approach -- 2.2 Extension to GQM: Metrics Mechanism is Important -- 2.3 Method 2: Decision Maker Model -- 2.4 Method 3: Standards Driven Metrics -- 2.5 What to Measure is a Function of Time -- 2.6 Summary -- References -- Exercises -- Project -- 3. Fundamentals of Measurement -- 3.1 Initial Measurement Exercise -- 3.2 The Challenge of Measurement -- 3.3 Measurement Models -- 3.3.1 Text Models -- 3.3.2 Diagrammatic Models -- 3.3.3 Algorithmic Models -- 3.3.4 Model Examples: Response Time -- 3.3.5 The Pantometric Paradigm - How to Measure Anything -- 3.4 Meta-Model for Metrics -- 3.5 The Power of Measurement -- 3.6 Measurement Theory -- 3.6.1 Introduction to Measurement Theory -- 3.6.2 Measurement Scales -- 3.6.3 Measures of Central Tendency and Variability -- 3.6.3.1 Measures of Central Tendency -- 3.6.3.2 Measures of Variability -- 3.6.4 Validity and Reliability of Measurement -- 3.6.5 Measurement Error -- 3.7 Accuracy versus Precision and the Limits of Software Measurement -- 3.7.1 Summary -- 3.7.2 Problems -- 3.7.3 Project -- References -- 4. Measuring the Size of Software -- 4.1 Physical Measurements of Software -- 4.1.1 Measuring Lines of Code -- 4.1.1.1 Code Counting Checklists -- 4.1.2 Language Productivity Factor -- 4.1.3 Counting Reused and Refactored Code -- 4.1.4 Counting Non-Procedural Code Length -- 4.1.5 Measuring the Length of Specifications and Design -- 4.2 Measuring Functionality -- 4.2.1 Function Points -- 4.2.1.1 Counting Function Points -- 4.2.2 Function Point Counting Exercise -- 4.2.3 Converting Function Points to Physical Size -- 4.2.4 Converting Function Points to Effort -- 4.2.5 Other Function Point Engineering Rules -- 4.2.6 Function Point Pros and Cons -- 4.3 Feature Points -- 4.4 Size Summary -- 4.5 Size Exercises -- 4.6 Theater Tickets Project.References -- 5. Measuring Complexity -- 5.1 Structural Complexity -- 5.1.1 Size as a Complexity Measure -- 5.1.1.1 System Size and Complexity -- 5.1.1.2 Module Size and Complexity -- 5.1.2 Cyclomatic Complexity -- 5.1.3 Halstead's Metrics -- 5.1.4 Information Flow Metrics -- 5.1.5 System Complexity -- 5.1.5.1 Maintainability Index -- 5.1.5.2 The Agresti-Card System Complexity Metric -- 5.1.6 Object-Oriented Design Metrics -- 5.1.7 Structural Complexity Summary -- 5.2 Conceptual Complexity -- 5.3 Computational Complexity -- 5.4 Complexity Metrics Summary -- 5.5 Complexity Exercises -- 5.6 Projects -- References -- 6. Estimating Effort -- 6.1 Effort Estimation - Where are we? -- 6.2 Software Estimation Methodologies and Models -- 6.2.1 Expert Estimation -- 6.2.1.1 Work and Activity Decomposition -- 6.2.1.2 System Decomposition -- 6.2.1.3 The Delphi Methods -- 6.2.2 Using Benchmark Size Data -- 6.2.2.1 Lines of Code Benchmark Data -- 6.2.2.2 Function Point Benchmark Data -- 6.2.3 Estimation by Analogy -- 6.2.3.1 Traditional Analogy Approach -- 6.2.3.2 Analogy Summary -- 6.2.4 Proxy Point Estimation Methods -- 6.2.4.1 Meta-Model for Effort Estimation -- 6.2.4.2 Function Points -- 6.2.4.2.1 COSMIC Function Points -- 6.2.4.3 Object Points -- 6.2.4.4 Use Case Sizing Methodologies -- 6.2.4.4.1 Use Case Points Methodology -- 6.2.4.4.2 Example: Use Case Point Methodology Example: Home Security System -- 6.2.4.4.3 Use Case Point Methodology Effectiveness -- 6.2.5 Custom Models -- 6.2.6 Algorithmic Models -- 6.2.6.1 Manual Models -- 6.2.6.2 Estimating Project Duration -- 6.2.6.3 Tool Based Models -- 6.3 Combining Estimates -- 6.4 Estimating Issues -- 6.4.1 Targets vs. Estimates -- 6.4.2 The Limitations of Estimation - Why? -- 6.4.3 Estimate Uncertainties -- 6.5 Estimating Early and Often -- 6.6 Estimation Summary -- 6.7 Estimation Problems -- 6.8 Estimation Project - Theater Tickets -- References -- 7. In Praise of Defects: Defects and Defect Metrics -- 7.1 Why study and measure defects?.7.2 Faults vs. failures -- 7.3 Defect Dynamics and Behaviors -- 7.3.1 Defect Arrival Rates -- 7.3.2 Defects vs. Effort -- 7.3.3 Defects vs. Staffing -- 7.3.4 Defect Arrival Rates vs. Code Production Rate -- 7.3.5 Defect Density vs. Module Complexity -- 7.3.6 Defect Density vs. System Size -- 7.4 Defect Projection Techniques and Models -- 7.4.1 Dynamic Defect Models -- 7.4.1.1 Rayleigh Models -- 7.4.1.2 Exponential and S-Curves Arrival Distribution Models -- 7.4.1.3 Empirical Data and Recommendations for Dynamic Models -- 7.4.2 Static Defect Models -- 7.4.2.1 Defect Insertion and Removal Model -- 7.4.2.2 Defect Removal Efficiency - A Key Metric -- 7.4.2.3 Static Defect Model Tools -- 7.5 Additional Defect Benchmark Data -- 7.5.1 Defect Data By Application Domain -- 7.5.2 Cumulative Defect Removal Efficiency (DRE) Benchmark -- 7.5.3 SEI Levels and Defect Relationships -- 7.5.4 Latent Defects -- 7.5.5 Other Defects Benchmarks and a Few Recommendations+ -- 7.6 Cost Effectiveness of Defect Removal by Phase -- 7.7 Defining and Using Simple Defect Metrics: An example -- 7.8 Some Paradoxical Patterns for Customer Reported Defects -- 7.9 Defect Summary -- 7.10 Problems -- 7.11 Projects -- 7.12 Answers to the initial questions -- References -- 8. Software Reliability Measurement and Prediction -- 8.1 Why study and measure software reliability? -- 8.2 What is reliability? -- 8.3 Faults and failures -- 8.4 Failure Severity Classes -- 8.5 Failure Intensity -- 8.6 The Cost of Reliability -- 8.7 Software Reliability Theory -- 8.7.1 Uniform and Random Distributions -- 8.7.2 The probability of failure during a time interval -- 8.7.3 F(t) - The Probability of Failure by time t -- 8.7.4 R(t) - The Reliability Function -- 8.7.5 Reliability Theory Summarized -- 8.8 Reliability Models -- 8.8.1 Types of Models -- 8.8.2 Predicting Number of Defects Remaining -- 8.8.3 Reliability Growth Models -- 8.8.4 Model Summary -- 8.9 Failure Arrival Rates -- 8.9.1 Predicting Failure Arrival Rates Using Historical Data.8.9.2 Engineering Rules for MTTF -- 8.9.3 Musa's Algorithm -- 8.9.4 Operational Profile Testing -- 8.9.5 Predicting Reliability Summary -- 8.10 But when do I ship? -- 8.11 System Configurations: Probability and Reliability -- 8.12 Answers to Initial Question -- 8.13 Reliability Summary -- 8.14 Reliability Exercises -- 8.15 Reliability Project -- References -- 9. Response Time and Availability -- 9.1 Response Time Measurements -- 9.2 Availability -- 9.2.1 Availability Factors -- 9.2.2 Outage Scope -- 9.2.3 Complexities in Measuring Availability -- 9.2.4 Software Rejuvenation -- 9.2.4.1 Software Aging -- 9.2.4.2 Classification of Faults -- 9.2.4.3 Software Rejuvenation Techniques -- 9.2.4.4 Impact of Rejuvenation on Availability -- 9.3 Summary -- 9.4 Problems -- 9.5 Project -- References -- 10. Measuring Progress -- 10.1 Project Milestones -- 10.2 Code Integration -- 10.3 Testing Progress -- 10.4 Defects Discovery and Closure -- 10.4.1 Defect Discovery -- 10.4.2 Defect Closure -- 10.5 Process Effectiveness -- 10.6 Summary -- References -- Problems -- 11. Outsourcing -- 11.1 The "O" Word -- 11.2 Defining Outsourcing -- 11.3 Risks Management and Outsourcing -- 11.4 Metrics and the Contract -- 11.5 Summary -- References -- Exercises -- Problems -- Chapter 11 Sidebar -- 12. Financial Measures for the Software Engineer -- 12.1 It's All About the Green -- 12.2 Financial Concepts -- 12.3 Building the Business Case -- 12.3.1 Understanding Costs -- 12.3.1.1 Salaries -- 12.3.1.2 Overhead Costs -- 12.3.1.3 Risk Costs -- 12.3.1.3.1 Identifying Risk -- 12.3.1.3.2 Assessing Risks -- 12.3.1.3.3 Planning for Risk -- 12.3.1.3.4 Monitoring Risk -- 12.3.1.4 Capital versus Expense -- 12.3.2 Understanding Benefits -- 12.3.3 Business Case Metrics -- 12.3.3.1 Return on Investment -- 12.3.3.2 Pay-Back Period -- 12.3.3.3 Cost/Benefit Ratio -- 12.3.3.4 Profit & Loss Statement -- 12.3.3.5 Cash Flow -- 12.3.3.6 Expected Value -- 12.4 Living the Business Case -- 12.5 Summary -- References -- Problems.Projects -- 13. Benchmarking -- 13.1 What is Benchmarking -- 13.2 Why Benchmark -- 13.3 What to Benchmark -- 13.4 Identifying and Obtaining a Benchmark -- 13.5 Collecting Actual Data -- 13.6 Taking Action -- 13.7 Current Benchmarks -- 13.8 Summary -- References -- Problems -- Projects -- 14. Presenting Metrics Effectively to Management -- 14.1 Decide on the Metrics -- 14.2 Draw the Picture -- 14.3 Create a Dashboard -- 14.4 Drilling for Information -- 14.5 Example for the Big Cheese -- 14.6 Evolving Metrics -- 14.7 Summary -- References -- Problems -- Project -- Index.This book serves as a practical guide to metrics and quantitative software estimation, beginning with the foundations of measurement and metrics, and then focuses on techniques and tools for estimation of the required effort and the resulting quality of a software project.Quantitative software engineering series ;2Software measurementSoftware engineeringSoftware measurement.Software engineering.005.1005.14Laird Linda M.1952-845692Brennan M. Carol1954-845693CaBNVSLCaBNVSLCaBNVSLBOOK9910143577203321Software measurement and estimation1887906UNINA02399nam 2200541I 450 991070396110332120150904133626.0(CKB)5470000002436129(OCoLC)919971741(EXLCZ)99547000000243612920150904j199504 ua 0engurbn|||||||||txtrdacontentcrdamediacrrdacarrierDocumentation of the ARIES/GEOS dynamical core, version 2 /Max J. Suarez, Lawrence L. TakacsGreenbelt, Maryland :National Aeronautics and Space Administration, Goddard Space Flight Center,April 1995.1 online resource (vii, 45 pages) illustrations, mapsNASA technical memorandum ;104606.Technical report series on global modeling and data assimilation ;volume 5Title from title screen (viewed Sept. 4, 2015)."April 1995.""Performing organization: Laboratory for Atmospheres, Climate and Radiation Branch, Data Assimilation Office, Goddard Space Flight Center"--Technical report documentation page.Includes bibliographical references (pages 43-44).Documentation of the Advanced Remote-Sensing Imaging Emission Spectrometer Goddard Earth Observing System dynamical core, version 2Atmospheric General Circulation ModelsnasatAtmospheric physicsnasatFinite difference theorynasatNumerical weather forecastingnasatAtmospheric turbulencenasatAtmospheric General Circulation Models.Atmospheric physics.Finite difference theory.Numerical weather forecasting.Atmospheric turbulence.Suarez Max J.1416411Takacs Lawrence L.Laboratory for Atmospheres (Goddard Space Flight Center)Goddard Space Flight Center.Climate and Radiation Branch.Goddard Space Flight Center.Data Assimilation Office.Goddard Space Flight Center,United States.National Aeronautics and Space Administration,GPOGPOBOOK9910703961103321Documentation of the ARIES3521660UNINA04963nam 2201381z- 450 991055712850332120231214133255.0(CKB)5400000000040769(oapen)https://directory.doabooks.org/handle/20.500.12854/68579(EXLCZ)99540000000004076920202105d2021 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierWP3 - Innovation in Agriculture and Forestry Sector for Energetic SustainabilityBasel, SwitzerlandMDPI - Multidisciplinary Digital Publishing Institute20211 electronic resource (272 p.)3-0365-0226-2 3-0365-0227-0 The papers published in this Special Issue “WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability” bring together some of the latest research results in the field of biomass valorization and the process of energy production and climate change and other areas relevant to energetic sustainability [1–20]. Moreover, several works address the very important topic of evaluating the safety aspects for energy plant use [21–24]. Responses to our call generated the following statistics:• Submissions (21);• Publications (15);• Rejections (6);• Article types: research articles (13), reviews (2). Of the submitted papers, 15 have been successfully published as articles. Reviewing and selecting the papers for this Special Issue was very inspiring and rewarding. We also thank the editorial staff and reviewers for their efforts and help during the process. For better comprehension, the contributions to this Special Issue are divided into sections, as follows.Technology: general issuesbicsscbiomass wastegasificationpower generationinternal combustion engineCHPAspen Plusrotary dryerdrying processthermal energywood chipslife cycle analysisenvironmental valuationbiocharwillowpig manurerenewable energybiomassolive pomacecombustionORCworking fluidbeet topsrotary cutting devicetractoroscillationsdifferential equationsoptimal parametersbiomass productiongreenhousemultiple environmental parametersinteractive optimization schemespatial distributed factorsonline-offline strategyCFD-EAchippingpelletpoplarSRWCpelletizationbiomass qualityenergy qualityhorse skiddingwinch skiddingcable yarderlife cycle assessmentsocietal assessmenteconomic assessmentmulti-criteria decision analysissustainable forest managementinnovationagricultureforestryenergysustainabilityupdraftsyngasoxidizing agentenergy savingefficiencycontrolled environmentagricultural residuesmarketanaerobic digestionglobal warming potentialexternalitiescompostwoody pelletagropelletqualitystandardsblendingsugar beetbeet top cuttingtractor-harvester aggregateTechnology: general issuesPicchio Rodolfoedt284591Colantoni AndreaedtCecchini MassimoedtMarucci AlvaroedtRecanatesi FabioedtDi Mattia ElenaedtVillarini MauroedtCristofori ValerioedtPicchio RodolfoothColantoni AndreaothCecchini MassimoothMarucci AlvaroothRecanatesi FabioothDi Mattia ElenaothVillarini MauroothCristofori ValerioothBOOK9910557128503321WP3 – Innovation in Agriculture and Forestry Sector for Energetic Sustainability3036292UNINA