01557nam 2200385Ia 450 991070338490332120120322132916.0(CKB)4330000001783002(OCoLC)781295978(EXLCZ)99433000000178300220120322d2012 ua 0engurcn|||||||||txtrdacontentcrdamediacrrdacarrierCharacterizing inflow conditions across the rotor disk of a utility-scale wind turbine[electronic resource] /Andrew Clifton ... [and others][Golden, CO] :National Renewable Energy Laboratory,[2012]1 online resource (1 unnumbered page) color illustrationsNREL/PO ;5000-53816Title from PDF title screen (viewed Mar. 12, 2012)."92nd American Meteorological Society Annual Meeting, New Orleans, LA · 22-26 January 2012."Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine Wind turbinesTestingWind turbinesTesting.Clifton Andrew1385955National Renewable Energy Laboratory (U.S.)American Meteorological Society.Meeting.Wind and Hydropower Technologies Program (U.S.)GPOGPOBOOK9910703384903321Characterizing inflow conditions across the rotor disk of a utility-scale wind turbine3509002UNINA10855nam 2200553 450 991076819470332120231110215736.03-030-75093-0(CKB)5590000000519748(MiAaPQ)EBC6676056(Au-PeEL)EBL6676056(OCoLC)1259623596(PPN)260302031(EXLCZ)99559000000051974820220328d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierThe home of the future digitalization and resource management /Sinan KüfeoğluCham, Switzerland :Springer,[2021]©20211 online resource (269 pages)Sustainable Development Goals 3-030-75092-2 Includes bibliographical references and index.Intro -- Preface -- Contents -- 1 Sustainable Living Spaces and Open Digital Innovation Hub -- Abstract -- 1.1 Introduction -- 1.1.1 The Self-sustaining Concept -- 1.1.2 The Design of ODIH -- References -- 2 Water -- Abstract -- 2.1 Introduction -- 2.1.1 Current State of Water -- 2.1.1.1 The Future of Water in the World -- 2.1.1.2 The Future of Water in Turkey -- 2.1.1.3 What is Water-Energy-Food Nexus? -- 2.1.2 Water Perspective -- 2.1.3 What is a Sustainable Compound? -- 2.1.3.1 Needs of a Sustainable Compound -- 2.1.3.2 Sustainable Compound Versus Traditional House -- 2.2 Aim of the Study -- 2.3 Methodology -- 2.3.1 Providing Freshwater -- 2.3.1.1 Technologies and Tools in Providing Freshwater -- 2.3.1.2 Reuse of Greywater -- 2.3.2 Waste Management -- 2.3.2.1 Toilet System -- 2.3.3 HVAC -- 2.3.4 Location of HVAC, Waste Treatment and Water Circulation Systems in ODIH -- 2.4 Materials -- 2.4.1 Reverse Osmosis System -- 2.4.2 Heat Pump -- 2.4.3 Water Capturing System -- 2.4.4 Biogas Reactor -- 2.4.5 Water Tanks -- 2.4.6 Toilet System -- 2.4.7 Reuse of Greywater -- 2.5 Results -- 2.6 Discussion and Policy Recommendations -- 2.7 Conclusion -- Acknowledgements -- Appendix -- Appendix 2.1 Harvestable Rainwater (Area*rainfall*0.72) -- Appendix 2.2 Harvestable Rainwater After Purification -- Appendix 2.3 Used Rainwater -- Appendix 2.4 Surplus Rainwater -- Appendix 2.5 Used Rainwater After Purification (Used*0.9) -- Appendix 2.6 Greywater Production (Per day: 355 * 0.75 * 0.8 ≌ 210 L) -- Appendix 2.7 Greywater Amount After Purification (Greywater Production*0.9) -- Appendix 2.8 Total Water by Sources -- Appendix 2.9 Water from Humidity (5 L * 30) -- Appendix 2.10 Reverse Osmosis -- Appendix 2.11 Energy Consumptions (Purification: 3 kWh/m3, Reverse Osmosis: 11 kWh/m3, Water from Humidity: 350 kWh/m3, Hydrophore: 2.11 kWh/m3) -- References -- 3 Energy.Abstract -- 3.1 Introduction -- 3.1.1 Water-Energy-Food (WEF) Nexus -- 3.1.2 Solar Energy -- 3.1.2.1 Working Principle and Components of a Photovoltaic System -- 3.1.3 Wind Energy -- 3.1.3.1 Horizontal-Axis Turbines -- 3.1.3.2 Vertical-Axis Turbines -- 3.1.4 Biogas -- 3.1.4.1 Anaerobic Digestion -- 3.1.5 Energy Storage Systems -- 3.1.5.1 Batteries -- 3.2 Aim of the Study -- 3.3 Methodology and Materials -- 3.3.1 PV Panel -- 3.3.1.1 Solar Inverter -- 3.3.2 Wind Turbine -- 3.3.2.1 Wind Inverter -- 3.3.3 Biogas -- 3.3.4 Storage -- 3.3.4.1 Fundamental Terminology -- 3.3.4.2 Battery Selection -- 3.3.5 Calculation Methods -- 3.3.5.1 PV Calculations -- 3.3.5.3 Battery Calculations -- 3.4 Results -- 3.4.1 CO2 Emission Calculations -- 3.5 Discussion and Policy Recommendation -- 3.6 Conclusion -- Appendix 3.1 Yearly Consumption of Equipment and Household Appliances -- References -- 4 Food -- Abstract -- 4.1 Introduction -- 4.1.1 Climate-Smart Agriculture (CSA) -- 4.1.1.1 What Is Smart Agriculture? -- 4.1.1.2 Why Do We Need Smart Agriculture? -- 4.1.1.3 The Importance of Managing Landscapes for CSA -- 4.1.1.4 Water Management -- 4.1.2 Sustainable Food Production -- 4.1.3 The Water-Energy-Food (WEF) Nexus -- 4.1.4 Future Problems -- 4.1.4.1 Food -- 4.1.4.2 Agricultural Land -- 4.1.4.3 Uncontrolled Urbanization -- 4.2 Aim of the Study -- 4.3 Methodology -- 4.3.1 Recommended Ratios of Macronutrients for Energy Intake -- 4.3.2 Why Potato? -- 4.3.3 Nutrient Film Technique (NFT) -- 4.3.4 Required Quantity of Potato for One Average Human in a Year -- 4.3.5 Calculations of Conventional Agriculture -- 4.3.5.1 Area Needed to Provide Nutritional Requirements -- 4.3.5.2 Water Consumption of Conventional Farming -- 4.3.5.3 Energy Consumption of Conventional Farming -- 4.3.5.4 Total Energy Consumption of Conventional Farming.4.3.5.5 Calculations for WEF Nexus Phenomenon for Conventional Farming -- 4.3.6 Soilless Agriculture (NFT) System -- 4.3.6.1 Area Needed to Provide Nutritional Requirements -- 4.3.6.2 Water Consumption of NFT System -- 4.3.6.4 Calculations for WEF Nexus Phenomenon -- 4.4 Materials -- 4.5 Results -- 4.5.1 Healthy Diet -- 4.5.2 Conventional Agriculture -- 4.5.3 Soilless Agriculture -- 4.6 Discussions and Policy Recommendation -- 4.6.1 Discussion -- 4.6.2 Policy Recommendations -- 4.7 Conclusion -- Appendix 4.1 -- References -- 5 The Enabling Technology: Internet of Things (IoT) -- Abstract -- 5.1 Introduction -- 5.1.1 Internet of Things and Efficiency -- 5.1.2 The Place of Demand Response, Machine Learning and Artificial Intelligence in Internet of Things -- 5.1.3 Capabilities and Future -- 5.2 Aim of the Study -- 5.3 Methodology and Materials -- 5.3.1 Setting an Intelligent Home System -- 5.3.2 Working Steps of IoT -- 5.3.2.2 Connectivity -- 5.3.2.3 Data Processing -- 5.3.2.4 User Interface -- 5.3.3 Cloud-Based IoT System and Its Implementation -- 5.3.3.1 Storage Issues -- 5.3.3.2 Data-Processing Issues -- 5.3.3.3 Communication Issues -- 5.3.3.4 Application Programming Interface -- 5.3.4 Water, Energy and Food Security (WEF) Nexus and IoT -- 5.3.4.1 Energy Management, Consumption and Efficiency -- 5.3.4.2 IoT and Agriculture -- 5.3.4.3 IoT for Water Management -- 5.3.5 Materials -- 5.3.5.1 Home Communication Network -- 5.3.5.2 Home Appliances -- 5.4 Results -- 5.4.1 A Day with IoT -- 5.5 Discussion -- 5.5.1 Device Compatibility & -- Communication Protocols -- 5.5.2 Open Source Problem -- 5.5.3 Cloud Connection or Local Network -- 5.5.4 Discussion and Policy Recommendations -- 5.6 Conclusion -- References -- 6 Home Management System: Artificial Intelligence -- Abstract -- 6.1 Introduction -- 6.1.1 Machine Learning -- 6.1.2 Deep Learning.6.1.3 Reinforcement Learning -- 6.2 Aim of the Study -- 6.3 Methodology -- 6.3.1 The Home Management System -- 6.3.1.1 Energy Management -- 6.3.1.2 Food & -- Agriculture -- 6.3.1.3 Water Consumption and Generation -- 6.3.1.4 Waste Management -- 6.3.1.5 Healthcare -- 6.3.1.6 Customisation/Entertainment -- 6.3.1.7 Security -- 6.3.2 Building the Smart Hub -- 6.3.2.1 Comparison of Three Different Home Automation Systems -- 6.3.2.2 Home Assistant -- 6.4 Results -- 6.4.1 Energy Management -- 6.4.2 Food and Agriculture -- 6.4.3 Water Management -- 6.5 Discussion -- 6.5.1 Energy Management -- 6.5.2 Water Management -- 6.5.3 Healthcare -- 6.5.4 Waste Management -- 6.5.5 Customisation and Entertainment -- 6.5.6 Policy Recommendation -- 6.6 Conclusion -- Appendix -- References -- 7 Demand Response and Smart Charging -- Abstract -- 7.1 Introduction -- 7.1.1 Basics of EV Charging -- 7.1.1.1 AC Connectors -- 7.1.1.2 DC Connectors -- 7.1.2 High EV Penetration Scenarios and Coordination Methodologies -- 7.1.2.1 Dump Charging -- 7.1.2.2 Multiple Tariff Policy -- 7.1.2.3 Smart (Coordinated) Charging -- 7.1.2.4 Vehicle to Everything (V2X) -- 7.1.3 Smart Charging Opportunities -- 7.1.4 Demand Side Management via Smart Charging -- 7.1.5 Virtual Power Plants -- 7.1.6 Second Usage of Electric Vehicle Batteries -- 7.2 Aim of the Study -- 7.3 Methodology -- 7.3.1 Charging Station Selection -- 7.3.2 Charging Station Connectivity -- 7.3.3 Smart Charging Coordination via Charging Protocols -- 7.3.4 Machine Learning Approaches for EV Charging Management -- 7.4 ODIH Hybrid Energy Management System Algorithm -- 7.4.1 ODIH Hybrid Energy Management System Description -- 7.4.1.1 System Components -- 7.4.2 Data Sources of HEMS Algorithm and Data Sample Methodology -- 7.4.2.1 Battery State of Charge (SoC) and Depth of Discharge (DoD).7.4.2.2 Real-Time and Estimated Solar Production -- 7.4.2.3 Real-Time and Estimated Wind Production -- 7.4.2.4 House Demand -- 7.4.2.5 Energy Tariff Signals -- 7.4.2.6 Weather Data -- 7.4.3 Operation Modes of ODIH HEMS Algorithm -- 7.5 Results -- 7.5.1 Uncertainty and Imbalance in Energy Production and Consumption -- 7.5.2 Importance of Energy Storage -- 7.5.3 Opportunities for Load Scheduling and Smart Charging -- 7.5.4 Advantages of Smart Energy Management Algorithms -- 7.5.5 Tariffs for Demand Side Management -- 7.6 Discussion and Policy Recommendation -- 7.6.1 Empowering e-Mobility -- 7.6.2 Smart Charging and Prosumers -- 7.6.3 Developing Smart Tariffs for Prosumers and EV Owners -- 7.7 Conclusion -- References -- 8 Blockchain Applications and Peer-To-Peer Tradings -- Abstract -- 8.1 Introduction -- 8.1.1 Peer-To-Peer Energy Trading -- 8.1.1.1 The Potential Impact on Energy Sector Transformation -- 8.1.1.3 How Can We Use P2P Energy Trade in the ODIH? -- 8.1.2 The New Trends of Future Energy Markets: Digitalisation, Decarbonisation, and Decentralisation -- 8.1.2.1 Digitalisation -- 8.1.2.2 Decarbonisation -- 8.1.2.3 Decentralisation -- 8.1.3 The Blockchain -- 8.1.3.1 Why We Are Using Blockchain? How Does It Relate to P2P? -- 8.1.3.2 Blockchain Applications -- 8.1.4 Smart Contracts -- 8.1.4.1 Definition and History of Smart Contracts -- 8.1.4.2 Benefits of Smart Contracts -- 8.1.4.3 Types of Smart Contracts -- 8.1.4.4 Use-Cases of Smart Contracts -- 8.1.5 United Nations Development Programme Sustainable Development Goals (SDG) -- 8.1.5.1 SDG 7 (Affordable and Clean Energy) -- 8.1.5.2 SDG 9 (Industry, Innovation, and Infrastructure) -- 8.1.5.3 SDG 11 (Sustainable Cities and Communities) -- 8.1.5.4 SDG 12 (Responsible Consumption and Production) -- 8.1.5.5 SDG 13 (Climate Action) -- 8.1.6 Aim of the Study -- 8.2 Methodology -- 8.2.1 Software.8.2.1.1 Cost of Producing Electricity.Sustainable Development Goals Sustainable developmentSustainable architectureUrban economicsSustainable development.Sustainable architecture.Urban economics.720.47Küfeoğlu Sinan898255MiAaPQMiAaPQMiAaPQBOOK9910768194703321The home of the future3656133UNINA