01397nam 2200385Ka 450 991069302710332120041027143311.0(CKB)5470000002359236(OCoLC)56829292ocm56829292(OCoLC)995470000002359236(EXLCZ)99547000000235923620041027d2001 ua 0engtxtrdacontentcrdamediacrrdacarrierFreedom soars[electronic resource] defending our nation and our environment[Washington, D.C.] :U.S. Dept. of Defense, Legacy Resource Management Program :U.S. Dept. of the Interior, U.S. Fish and Wildlife Service,[2001?]Title from title screen (viewed on OCt. 27, 2004).Freedom soars Bald eagleUnited StatesPostersWildlife conservationUnited StatesPostersMilitary basesEnvironmental aspectsUnited StatesPostersBald eagleWildlife conservationMilitary basesEnvironmental aspectsUnited States.Department of Defense.Legacy Resources Management Program.U.S. Fish and Wildlife Service.GPOGPOBOOK9910693027103321Freedom soars3433158UNINA03532nam 22006735 450 991088780260332120250808093356.03-031-50466-610.1007/978-3-031-50466-2(MiAaPQ)EBC31683200(Au-PeEL)EBL31683200(CKB)36129183000041(DE-He213)978-3-031-50466-2(EXLCZ)993612918300004120240919d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierOptimal Transport on Quantum Structures /edited by Jan Maas, Simone Rademacher, Tamás Titkos, Dániel Virosztek1st ed. 2024.Cham :Springer Nature Switzerland :Imprint: Springer,2024.1 online resource (327 pages)Bolyai Society Mathematical Studies,2947-9460 ;293-031-50465-8 Preface -- Chapter 1. An Introduction to Optimal Transport and Wasserstein Gradient Flows by Alessio Figalli -- Chapter 2. Dynamics and Quantum Optimal Transport:Three Lectures on Quantum Entropy and Quantum Markov Semigroups by Eric A. Carlen -- Chapter 3. Quantum Couplings and Many-body Problems by Francois Golse -- Chapter 4. Quantum Channels and Qubits by Giacomo De Palma and Dario Trevisan -- Chapter 5. Entropic Regularised Optimal Transport in a Noncommutative Setting by Lorenzo Portinale -- Chapter 6. Logarithmic Sobolev Inequalities for Finite Dimensional Quantum Markov Chains by Cambyse Rouzé.The flourishing theory of classical optimal transport concerns mass transportation at minimal cost. This book introduces the reader to optimal transport on quantum structures, i.e., optimal transportation between quantum states and related non-commutative concepts of mass transportation. It contains lecture notes on classical optimal transport and Wasserstein gradient flows dynamics and quantum optimal transport quantum couplings and many-body problems quantum channels and qubits These notes are based on lectures given by the authors at the "Optimal Transport on Quantum Structures" School held at the Erdös Center in Budapest in the fall of 2022. The lecture notes are complemented by two survey chapters presenting the state of the art in different research areas of non-commutative optimal transport.Bolyai Society Mathematical Studies,2947-9460 ;29MathematicsMathematical analysisGlobal analysis (Mathematics)Manifolds (Mathematics)Measure theoryMathematicsAnalysisGlobal Analysis and Analysis on ManifoldsMeasure and IntegrationMathematics.Mathematical analysis.Global analysis (Mathematics)Manifolds (Mathematics)Measure theory.Mathematics.Analysis.Global Analysis and Analysis on Manifolds.Measure and Integration.530.12015196Maas Jan1769223Rademacher Simone1769224Titkos Tamás1769225Virosztek Dániel1769226MiAaPQMiAaPQMiAaPQBOOK9910887802603321Optimal Transport on Quantum Structures4237448UNINA