04811nam 2200901z- 450 991068838440332120231214133102.0(CKB)5400000000045864(oapen)https://directory.doabooks.org/handle/20.500.12854/62527(EXLCZ)99540000000004586420202102d2015 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierWater Resources in a Variable and Changing ClimateMDPI - Multidisciplinary Digital Publishing Institute20153-03842-082-4 Climate change will bring about significant changes to the capacity of, and the demand on, water resources. The resulting changes include increasing climate variability that is expected to affect hydrologic conditions. The effects of climate variability on various meteorological variables have been extensively observed in many regions around the world. Atmospheric circulation, topography, land use and other regional features modify global changes to produce unique patterns of change at the regional scale. As the future changes to these water resources cannot be measured in the present, hydrological models are critical in the planning required to adapt our water resource management strategies to future climate conditions. Such models include catchment runoff models, reservoir management models, flood prediction models, groundwater recharge and flow models, and crop water balance models. In water-scarce regions such as Australia, urban water systems are particularly vulnerable to rapid population growth and climate change. In the presence of climate change induced uncertainty, urban water systems need to be more resilient and multi-sourced. Decreasing volumetric rainfall trends have an effect on reservoir yield and operation practices. Severe intensity rainfall events can cause failure of drainage system capacity and subsequent urban flood inundation problems. Policy makers, end users and leading researchers need to work together to develop a consistent approach to interpreting the effects of climate variability and change on water resources. This Special Edition includes papers by international experts who have investigated climate change impacts on a variety of systems including irrigation and water markets, land use changes and vegetation growth, lake water levels and quality and sea level rises. These investigations have been conducted in many regions of the world including the USA, China, East Africa, Australia, Taiwan and the Sultanate of Oman.meteorological variableswater resources managementuncertaintyhydrological modelsclimate modelsAymar Y. Bossaauth1352235Bernd DiekkrügerauthHong-Ming LiuauthEihab FathelrahmanauthCharles B. NiwagabaauthMd Sumon ShahriarauthZongli LiauthJames PritchettauthJonathan E. KennyauthMohammad KamruzzamanauthRobert BrooksauthMike D. BurchauthLeszek SobkowiakauthJanel HanrahanauthSergey KravtsovauthMohammed Saif Al-KalbaniauthWen-Cheng HuangauthWen-Cheng LiuauthEuloge K. AgbossouauthAlistair GrinhamauthPatrick WillemsauthM. Mercedes Taboada-CastroauthTimothy O'HigginsauthAlec ZuoauthJohn BolandauthMushtaque AhmedauthM. Teresa Taboada-CastroauthAsma AbahussainauthMary AkurutauthRupak AryalauthRobert I. DalyauthJyun-Long LeeauthAmalia DaviesauthJun XiaauthJan Jacob KeizerauthMartin F. PriceauthSimon BeechamauthMorgan BidaauthLeon van der LindenauthEdwyna HarrisauthJoao Pedro NunesauthAnn WheelerauthHenning BjornlundauthRicardo AriasauthTodd PaganoauthStephen DaviesauthPaul RoebberauthLingling ZhaoauthM. Luz Rodríguez-BlancoauthBOOK9910688384403321Water Resources in a Variable and Changing Climate3163728UNINA