10913nam 2200505 450 991068459510332120230607075832.03-527-82799-43-527-82798-63-527-82797-8(MiAaPQ)EBC7217797(Au-PeEL)EBL7217797(OCoLC)1373988694(EXLCZ)992629114550004120230607d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierIndustrial arene chemistry markets, technologies, sustainable processes and case studies of aromatic commodities /edited by Jacques MortierWeinheim, Germany :Wiley-VCH,[2023]©20231 online resource (2806 pages)Print version: Mortier, Jacques Industrial Arene Chemistry Newark : John Wiley & Sons, Incorporated,c2023 9783527347841 Includes bibliographical references and index.Intro -- Table of Contents -- Title Page -- Copyright -- Foreword -- Preface -- Section 1.  The Markets for Aromatic Commodities -- Section 2.  BTX, Naphthalene, and Higher Aromatics from Fossil‐Based Sources -- Section 3.  Aromatics from Methanol and Synthesis Gas -- Section 4.  The Chemistry of Downstream Functional Aromatics -- Section 5.  Sustainable Aromatics Production and Technology -- Volume 1 -- Section 1: The Markets for Aromatic Commodities -- 1 The Fossil‐Based BTX Market -- 1.1 Introduction -- 1.2 Development of the Steel Industry - Extraction of Aromatics from Coke Oven Light Oil -- 1.3 Refining and Petrochemicals - Aromatics from Reformate and Pygas -- 1.4 Aromatics in Gasoline -- 1.5 Toluene and Mixed Xylenes for Chemical and Solvent Use -- 1.6 Benzene as Co‐product - Pricing Volatility -- 1.7 Paraxylene Production and Sourcing -- 1.8 Orthoxylene and Metaxylene as Co‐products -- 1.9 The Shift to Asia and Explosive Growth in China - Changing Regional Product Flows -- 1.10 Environmental Challenges: Decarbonization, a Future for Bio‐based Aromatics? -- 1.11 The Competitive Challenge for Europe -- 2 The Downstream Functional Aromatics Market -- 2.1 Introduction -- 2.2 Benzene Derivatives -- 2.3 Toluene Derivatives -- 2.4 Xylene Derivatives -- 2.5 Outlook for Future Growth: Sustainability and the Impact of Recycling -- 3 Crude Oil to Chemicals: Industry Development and Strategic Implications -- 3.1 Driving Forces Behind Crude Oil to Chemicals -- 3.2 COTC Routes -- 3.3 COTC vs. Traditional Refinery Petrochemical Integration -- 3.4 Recent COTC Projects -- 3.5 Configuration and Technologies -- 3.6 Strategic Implications -- 3.7 Carbon Footprint and Sustainability -- References -- Section 2: BTX, Naphthalene and Higher Aromatics from Fossil‐Based Sources -- 4 BTX from Light Hydrocarbons -- 4.1 Introduction.4.2 Commercial Processes and Emerging Methods -- 4.3 Brief Principle and Elementary Step -- 4.4 Light Hydrocarbon Aromatization -- 4.5 Brief Comparison Between Zn/HZSM‐5 and Ga/HZSM‐5 -- 4.6 Deactivation of ZSM‐5 and Metal/ZSM‐5 Catalysts -- 4.7 Summary and Outlook -- Acknowledgments -- List of Abbreviations -- References -- 5 BTX Aromatics from Naphtha Hydrocarbons -- 5.1 Introduction -- 5.2 Naphtha -- 5.3 Dehydrocyclization by Monofunctional Metal Catalysts -- 5.4 Catalytic Naphtha Reforming by Bifunctional Catalysts -- 5.5 Aromatization by Monofunctional Acid Catalysts -- 5.6 In Summary -- References -- 6 BTX Aromatics from Heavier Material than Naphtha -- 6.1 Introduction -- 6.2 Heavier Material than Naphtha -- 6.3 Thermal Cracking -- 6.4 Catalytic Cracking -- 6.5 Hydroprocessing -- 6.6 In Summary -- References -- 7 BTX Aromatics from Other Conversion Processes -- 7.1 Introduction -- 7.2 Xylene Isomerization -- 7.3 Transalkylation (Disproportionation) -- 7.4 Hydrodealkylation -- 7.5 Methylation -- 7.6 Decarboxylation of Benzoic Acid -- 7.7 Hydrodeoxygenation of Phenolic Compounds -- 7.8 In Summary -- References -- 8 Bi‐ and Tri‐nuclear Aromatic Production -- 8.1 Introduction -- 8.2 Properties of Bi‐ and Tri‐nuclear Aromatics -- 8.3 Markets for Bi‐ and Tri‐nuclear Aromatics -- 8.4 Naphthalene -- 8.5 Anthracene -- 8.6 In Summary -- References -- 9 Extraction Separation of Aromatics -- 9.1 Introduction -- 9.2 Extraction of Aromatics Using Traditional Organic Solvents -- 9.3 Extraction of Aromatics Using Ionic Liquids -- 9.4 Extraction of Aromatics Using Deep Eutectic Solvents -- 9.5 Extractive Distillation of Aromatics from Aliphatics -- 9.6 Summary and Outlook -- Acknowledgments -- Abbreviations -- References -- 10 The Honeywell UOP CCR Platforming™ Process for BTX Production (Case Study) -- 10.1 Introduction -- 10.2 History.10.3 Feedstock and Products -- 10.4 Reforming Reactions -- 10.5 Reforming Process Conditions -- 10.6 Reforming Catalysts -- 10.7 Process Flow Schemes -- 10.8 Economics -- 10.9 Forward Directions -- References -- 11 The Honeywell UOP ParexTM Process: Fifty Years of Growth for the Petrochemical Industry (Case Study) -- 11.1 Introduction -- 11.2 Development of Adsorptive Separation Technology for Para‐xylene -- 11.3 Integration of Para‐xylene Adsorption with Other Aromatic Technologies -- 11.4 Evolution of The UOP Parex Process -- 11.5 Outlook -- References -- 12 Forty Years of Xylene Isomerization Technology Deployment at ExxonMobil (Case Study) -- 12.1 Introduction -- 12.2 Vapor‐Phase Xylene Isomerization (VPI) -- 12.3 EB Dealkylation‐Based VPI Processes: An Evolutionary History -- 12.4 Significance of Xylene Loss -- 12.5 Retrofit of EB‐Reforming Process to EB‐Dealkylation Process -- 12.6 Liquid‐Phase Isomerization -- 12.7 Outlook for Xylene Isomerization Processes -- References -- 13 ExxonMobil PxMaxSM Process: Production of Paraxylene (Case Study) -- 13.1 Introduction -- 13.2 Shape‐Selective Catalysis -- 13.3 Development of Selective Toluene Disproportionation Technology -- 13.4 Process Description -- 13.5 Paraxylene Recovery from Paraxylene‐Enriched Effluent -- 13.6 STDP vs. Other Toluene Routes to Xylenes -- 13.7 Economics Favoring STDP -- 13.8 Outlook -- References -- 14 BP/Amoco Paraxylene Crystallization Technology (Case Study) -- 14.1 Introduction -- 14.2 The BP Amoco pX Unit Fractionation Section -- 14.3 The BP Amoco pX Unit Crystallization Section -- 14.4 The BP Amoco pX Unit Refrigeration Section -- 14.5 Other New BP Amoco pX Technologies -- 14.6 Summary -- Acknowledgments -- References -- 15 Reactions and Mechanisms of Xylene Isomerization and Related Processes -- 15.1 Introduction -- 15.2 EB Transalkylation Catalysts.15.3 A Shape Selective Shift in the Mechanism for Ethyl Transfer -- 15.4 EB Dealkylation Catalysts -- 15.5 Summary of the Effect of the Shape Selective Shift in Ethyl Transfer or Removal -- 15.6 Dual Bed EB TA and EB DE Catalysts -- 15.7 Comment on Optimal EB Conversion for Selective Adsorption vs. Crystallization pX Units -- 15.8 Conversion of C9 P&amp -- N Co‐Boilers Over EB TA and EB DE Catalysts -- 15.9 EB Isomerization Catalysts -- 15.10 How the Shape Selective Shift in the Mechanism of Ethyl Transfer or Removal Led to the Development of Effective TOL/A9+ Transalkylation Catalysts -- 15.11 Thoughts on Incorporating TOL/A9+ TA and/or STDP and/or Selective TOL Alkylation By Methanol (STA) in an Aromatics Complex -- 15.12 Experimental Determination of the True Equilibrium Distribution of Xylenes -- 15.13 Summary -- List of Abbreviations -- References -- Note -- 16 Honeywell UOP Tatoray Process: Maximizing Feed Utilization for Aromatics Production (Case Study) -- 16.1 Introduction -- 16.2 Process Chemistry -- 16.3 UOP Tatoray Catalysts -- 16.4 UOP Tatoray Process -- 16.5 Summary -- List of Abbreviations -- References -- 17 The Honeywell UOP MX Sorbex™ Process: Enabling Growth of PET Resin Applications (Case Study) -- 17.1 Introduction -- 17.2 Mechanisms for Meta‐Xylene Separation -- 17.3 Adsorbent and Desorbent Selection -- 17.4 Commercial Applications -- 17.5 Outlook -- References -- Section 3: Aromatics from Methanol and Synthesis Gas -- 18 Methanol‐to‐Aromatics Compounds (MTA) Process -- 18.1 The Purpose of Developing MTA Technology -- 18.2 The Chemistry of MTA: Mechanistic and Kinetic Considerations -- 18.3 The Preparation of Catalysts in MTA -- 18.4 Effect of Operating Conditions -- 18.5 Reactor Technology of MTA -- 18.6 Perspectives -- References -- 19 Carbon Monoxide and Carbon Dioxide for Aromatics Production -- 19.1 Introduction.19.2 The Routes for Direct Aromatic Synthesis from CO and CO2 -- 19.3 Catalyst Design Strategies for Improving Catalytic Performance of Catalysts -- 19.4 Other Issues on the Production of Aromatics from CO and CO2 -- 19.5 Process Simulation on the Technical Economics Aspects -- 19.6 Summary and Outlook -- References -- Volume 2 -- Section 4: The Chemistry of Downstream Functional Aromatics -- Section 4.1: Alkylation -- 20 Homogeneous Friedel-Crafts Alkylation -- 20.1 Industrial Friedel-Crafts Alkylation -- 20.2 Catalysts in Friedel-Crafts Alkylation -- 20.3 Recent Advances in Friedel-Crafts Alkylation -- 20.4 Outlook and Future -- References -- 21 Heterogeneous Friedel-Crafts Alkylation -- 21.1 Introduction -- 21.2 Ethylbenzene Synthesis by the Ethylation of Benzene -- 21.3 Cumene Synthesis by the Isopropylation of Benzene -- 21.4 p‐Xylene Synthesis by the Isomerization of Xylene Isomers -- 21.5 p‐Xylene Synthesis by Toluene Disproportionation -- 21.6 p‐Xylene Synthesis by Toluene Methylation -- 21.7 Synthesis of Linear Alkylbenzenes -- 21.8 Alkylation of Naphthalene and the Related Catalysis -- 21.9 Alkylation of Biphenyl and Related Catalysis -- 21.10 Concluding Remark -- References -- 22 Badger Ethylbenzene Technology (Case Study) -- 22.1 Introduction -- 22.2 Ethylbenzene Technology Overview -- 22.3 EBMAXSM Process Description -- 22.4 Feedstocks for Ethylbenzene Production -- 22.5 Process Performance -- 22.6 Process Safety -- 22.7 Environmental Impact -- 22.8 Ethylbenzene Technology Outlook -- References -- 23 Exelus Styrene Monomer (ExSyM) Process (Case Study) -- 23.1 Styrene Industry Overview -- 23.2 Alkylation of Benzene with Ethylene -- 23.3 Dehydrogenation of Ethylbenzene to Styrene Monomer -- 23.4 PO/SM Route -- 23.5 Alternative Routes -- 23.6 Scheme of Reactions -- 23.7 Role of Acid-Base Sites -- 23.8 Ethylbenzene Formation.23.9 Phenylethanol as Intermediate.Aromatic compoundsChemical engineeringAromatic compounds.Chemical engineering.547.6Mortier JacquesMiAaPQMiAaPQMiAaPQBOOK9910684595103321Industrial Arene Chemistry3085765UNINA