00855nam0-2200253 --450 991064627990332120230302114139.020230302d1965----kmuy0itay5050 baengGB 001yy<<The >>Court of justice of the European Communitiesv. 1: Jurisdiction and Procedurev. 2: Judgments and Documents 1954-1960Donald Graham ValentineLondonStevens & SonsSouth HackensackFred B. Rothman19652 v.Corte di giustizia delle Comunità europee341.6322Valentine,Donald Graham299218ITUNINAREICATUNIMARCBK9910646279903321X Q 8176329FGBCFGBCCourt of justice of the European communities728084UNINA03550nam 22006375 450 991029978640332120200703143325.03-658-07618-610.1007/978-3-658-07618-4(CKB)3710000000269793(EBL)1965723(SSID)ssj0001372564(PQKBManifestationID)11881973(PQKBTitleCode)TC0001372564(PQKBWorkID)11304859(PQKB)10084467(DE-He213)978-3-658-07618-4(MiAaPQ)EBC1965723(PPN)18209507X(EXLCZ)99371000000026979320141029d2015 u| 0engur|n|---|||||txtccrClifford Algebras Geometric Modelling and Chain Geometries with Application in Kinematics /by Daniel Klawitter1st ed. 2015.Wiesbaden :Springer Fachmedien Wiesbaden :Imprint: Springer Spektrum,2015.1 online resource (228 p.)Description based upon print version of record.3-658-07617-8 Includes bibliographical references and index.Models and representations of classical groups -- Clifford algebras, chain geometries over Clifford algebras -- Kinematic mappings for Pin and Spin groups -- Cayley-Klein geometries.After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.  Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About the Author Daniel Klawitter is a scientific assistant at the Institute of Geometry at the Technical University of Dresden, Germany.  .GeometryGeometry, AlgebraicComputer scienceMathematicsGeometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21006Algebraic Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M11019Computational Mathematics and Numerical Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M1400XGeometry.Geometry, Algebraic.Computer scienceMathematics.Geometry.Algebraic Geometry.Computational Mathematics and Numerical Analysis.510516516.35518Klawitter Danielauthttp://id.loc.gov/vocabulary/relators/aut768289BOOK9910299786403321Clifford Algebras1564828UNINA