10957nam 2200553 450 991063772160332120230422052622.0981-19-6230-8(MiAaPQ)EBC7165659(Au-PeEL)EBL7165659(CKB)25913869600041(PPN)26781562X(EXLCZ)992591386960004120230422d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierAgroindustrial waste for green fuel application /editors : Neha Srivastava, Bhawna Verma, P. K. MishraSingapore :Springer,[2023]©20231 online resource (333 pages)Clean energy production technologiesPrint version: Srivastava, Neha Agroindustrial Waste for Green Fuel Application Singapore : Springer,c2023 9789811962295 Intro -- Preface -- Acknowledgments -- Contents -- Editors and Contributors -- Chapter 1: Pulses Waste to Biofuels -- 1.1 Introduction -- 1.2 Biofuels -- 1.2.1 Feedstocks for Biofuels: Lignocellulosic Biomass (LCB) -- 1.3 Classification of Biofuels -- 1.4 Biofuel Production from Pulses Waste -- 1.5 Procedure to Generate Biofuel from Legumes -- 1.5.1 Preparation of Raw Material -- 1.5.2 Pretreatment Processes -- 1.5.2.1 Physicomechanical Pretreatment -- 1.5.2.2 Chemical Treatment -- 1.5.2.3 Physiochemical Pretreatment -- 1.5.2.4 Steam -- 1.5.3 Thermochemical or Pyrolysis -- 1.5.4 Extrusion -- 1.5.5 Wet oxidation -- 1.6 Saccharification and Fermentation -- 1.6.1 Simultaneous Saccharification and Fermentation (SSF) -- 1.6.2 Separate Hydrolysis and Fermentation (SHF) -- 1.6.3 Enzymatic Aids for Biofuel Production -- 1.6.4 Enzymatic Aids for Biolubricant Production -- 1.6.5 The Chemical Aids for Bio Lubricant Production -- 1.6.6 Recovery or Yield Calculator -- 1.7 Conclusion -- References -- Chapter 2: Utilization of Wheat and Maize Waste as Biofuel Source -- 2.1 Introduction -- 2.2 Biofuels and History -- 2.3 Types of Biofuels -- 2.4 Generations of Biofuels -- 2.5 Global Scenario of Biofuel Production -- 2.6 Biofuel Production from Agricultural Wastes -- 2.7 Composition of Wheat and Maize Waste -- 2.8 Pretreatment Process -- 2.8.1 Physical Pretreatment -- 2.8.2 Physicochemical Pretreatment -- 2.8.3 Chemical Pretreatment -- 2.8.4 Biological Pretreatment -- 2.9 Enzymatic Hydrolysis (EH) -- 2.9.1 Fungal Cellulase Production -- 2.9.2 Bacterial/Yeast Cellulase Production -- 2.10 Fermentation -- 2.11 Separation of Biofuels from Fermentation Broth through Distillation -- 2.11.1 Bioethanol -- 2.11.2 Methane (Biogas) Generation -- 2.11.3 Butanol from Wheat Straw -- 2.11.4 Biohydrogen Production -- 2.12 Biotechnology for Efficient Biofuel Production.2.13 Environmental Impacts and Sustainability Issues -- 2.14 Major Challenges -- 2.15 Conclusion and Future Prospects -- References -- Chapter 3: Agricultural Residues and Manures into Bioenergy -- 3.1 Introduction -- 3.2 First-Generation Biofuels -- 3.3 Second-Generation Biofuels -- 3.3.1 Characterization of Lignocellulosic Biomass: Components and Structure -- 3.3.2 Lignocellulosic Biomass for Liquid Fuels by Thermochemical Conversion -- 3.4 Third-Generation Biofuels -- 3.4.1 Classification of Algae -- 3.4.1.1 Technique of Algal Oil Extraction -- 3.4.1.2 Harvesting and Drying of Algal Biomass -- 3.4.2 Production of Biodiesel -- 3.4.3 Production of Bioethanol -- 3.4.4 Production of Biogas -- 3.5 Conclusion -- References -- Chapter 4: Bioenergy from Cellulose of Woody Biomass -- 4.1 Introduction to Bioenergy and Biomass -- 4.2 Effects of Biochemical Composition on the Biotransformation of Biomasses -- 4.3 Generations of Bioenergy Technology -- 4.4 Bioenergy from Woody Feedstocks -- 4.5 Woody Biomass Energy Feedstocks -- 4.6 Pretreatment of Biomass in Biorefineries -- 4.7 Treatment Techniques of the Biomass -- 4.8 Oil Refinery and Biorefinery -- 4.9 Woody Biomass as a Basis for Bioenergy -- 4.10 Swachh Bharat Mission (Gramin) -- 4.11 Land Management, Use, and Intensification -- 4.12 Barriers to Feedstock Supply Stability -- 4.13 Overcoming Recalcitrance Presence in Woody Feedstock -- 4.14 Future Research Needs to Fill the Research Gaps -- 4.15 Conclusion -- References -- Chapter 5: Potential Technologies for Advanced Generation Biofuels from Waste Biomass -- 5.1 Introduction -- 5.2 Waste Valorization: A Concept -- 5.3 Biofuels Types and Generations -- 5.3.1 First-Generation Biofuels -- 5.3.1.1 Bioethanol -- 5.3.1.2 Biodiesel -- 5.3.1.3 Biogas -- 5.3.2 Second-Generation Biofuels -- 5.3.2.1 Second-Generation Biochemical Biofuels.5.3.2.2 Second-Generation Thermochemical Biofuels -- Biofuels Based on the Gasification Process -- Syngas Production -- CFB Gasifier Plus Tar Cracker -- Entrained Flow Gasification -- CFB Gasifier, OLGA, Plus Reformer -- Syngas Cleaning and Conditioning -- Biofuels from Bio-syngas -- Fischer-Tropsch Liquids -- Biomethanol -- Dimethyl Ether -- SNG (Substitute Natural Gas) -- Hydrogen Production -- Fischer-Tropsch Liquids from Biogas -- Bio-Oil or Pyrolysis Oil -- Liquid Fuel from Liquefaction -- 5.3.3 Third-Generation Biofuels -- 5.3.3.1 Bioethanol Via Consolidated Bioprocessing of Cellulosic Biomass -- 5.3.3.2 Native Cellulolytic Strategy -- 5.3.3.3 Recombinant Cellulolytic Strategy -- 5.3.3.4 Consolidated Process Based on Transgenic Plants with Expressed CWD-Enzymes -- 5.3.4 Bioproduction of Hydrogen -- 5.3.5 Biodiesel from Microalgae -- 5.3.5.1 Micro Diesel Using Whole-Cell Catalysts -- 5.3.5.2 Biodiesel from Oily Biomass -- 5.3.6 Fourth-Generation Biofuels -- 5.3.7 Future Perspective -- 5.4 Conclusion -- References -- Chapter 6: Biological Pretreatment Strategies for Second-Generation Lignocellulosic Biomass to Enhance Ethanol Production -- 6.1 Introduction -- 6.2 Ethanol: Biofuel History -- 6.3 Generation of Biofuels -- 6.3.1 First-Generation Biofuel (1 Gen) -- 6.3.2 Second-Generation Biofuel (2 Gen) -- 6.3.3 Third-Generation Biofuel (3 Gen) -- 6.3.4 Fourth-Generation Biofuel (4 Gen) -- 6.4 Current Status of Bioethanol -- 6.4.1 Worldwide Production Status of Bioethanol -- 6.4.2 Credentials of Bioethanol Production in India -- 6.5 Plant Lignocelluloses: Constituents -- 6.6 Lignocellulosic Agriculture Residues -- 6.6.1 Paddy Straw -- 6.6.2 Wheat Straw -- 6.7 Biological Pretreatment Methods -- 6.7.1 Lignocellulose Depolymerization -- 6.7.2 White-Rot Fungi -- 6.7.3 Brown-Rot Fungi -- 6.7.4 Soft-Rot Fungi.6.8 Hydrolytic and Oxidative Enzymes Convoluted in Lignin Dilapidation -- 6.8.1 Mediators Involved in Lignin Degradation -- 6.9 Upshot of Biological Treatments on Lignocelluloses -- 6.10 Steps on Ethanol Production from Lignocellulosic Feedstock -- 6.11 Impeaches in Biological Treatment -- 6.12 Conclusion -- References -- Chapter 7: Agricultural Lignocellulosic Waste to Biofuels -- 7.1 Introduction -- 7.2 Structures in Lignocellulose Biomass -- 7.3 Agricultural Wastes for Biofuels -- 7.3.1 Biofuel from Wheat Straw -- 7.3.1.1 Ethanol Production -- 7.3.1.2 Methane Production -- 7.3.1.3 Butanol Production -- 7.3.2 Biofuel from Maize -- 7.3.3 Biofuel from Rice -- 7.3.4 Biofuel from Sugarcane -- 7.4 Bio-Renewable Liquid Fuels -- 7.4.1 Vegetable Oil/Biodiesel -- 7.4.2 Bio-Oil -- 7.4.3 Bioalcohols -- 7.4.3.1 Bioethanol -- 7.4.3.2 Biomethanol -- 7.4.3.3 Biobutanol -- 7.4.4 Biogas -- 7.5 Processing of Biomass to Ethanol -- 7.5.1 Pretreatment -- 7.5.1.1 Milling -- 7.5.1.2 Microwave -- 7.5.1.3 Mechanical Extrusion -- 7.5.1.4 Pyrolysis -- 7.5.1.5 Pulse Electric Field (PEF) -- 7.5.1.6 Ozonolysis -- 7.5.1.7 Organosolv -- 7.5.1.8 Ionic Liquids (ILs) -- 7.5.1.9 Uncatalyzed Steam Explosion -- 7.5.1.10 Hot Water Treatment -- 7.5.1.11 Carbon Dioxide Explosions -- 7.5.1.12 Wet Oxidation -- 7.5.1.13 Biological Pretreatment -- 7.5.2 Hydrolysis -- 7.5.2.1 Physical Methods for Hydrolysis -- Hydrolysis Using Water or Steam Under Pressure -- Hydrolysis Using Subcritical and Supercritical Water -- Hydrolysis of Vegetable Oils -- Hydrolysis of Protein-Rich Biomass -- Chemical Methods for Hydrolysis -- Mechanism of Acid-Catalyzed Hydrolysis of Esters -- Mechanism of Base-Catalyzed Hydrolysis of Esters -- Enzymatic Hydrolysis -- 7.5.3 Microbial Fermentation -- References -- Chapter 8: Mixed Lignocellulosic Feedstocks: An Effective Approach for Enhanced Biofuel Production.8.1 Introduction -- 8.2 Biofuels -- 8.2.1 Bioethanol -- 8.2.2 Biobutanol -- 8.2.3 Biodiesel -- 8.2.4 Biogas -- 8.2.5 Biohydrogen -- 8.3 Lignocellulosic Biomass (LB) -- 8.3.1 Lignocellulosic Biomass (LCB) Sources -- 8.3.1.1 Paddy Straw: The Most Abundant Lignocellulosic Feedstock -- 8.3.1.2 Rice Husk -- 8.3.1.3 Coconut Husks -- 8.3.1.4 Sugarcane Bagasse (SCB) -- 8.3.1.5 Sugarcane Tops (SCT) -- 8.3.1.6 Maize Stover -- 8.3.1.7 Palm Oil Empty Fruit Bunch -- 8.4 Mixed Lignocellulosic Feedstock (MLF) Theory -- 8.4.1 Biofuel Production from Mixed Biomass -- 8.4.2 ``Mixed Starch-Based Agricultural Waste´´ (MSBAW) for Integrated Production of Biofuel -- 8.4.3 Advantages of Mixed Approach and Its Different Studies -- 8.4.3.1 Associated Reductions in Cost -- 8.4.3.2 Environmental Advantages -- 8.4.4 Disadvantages of Mixed Lignocellulosic Feedstock Approach -- 8.4.5 Overcoming the Barricades of Mixed Biomass Approach to Biofuel Production -- 8.5 Conclusion and Future Prospects -- References -- Chapter 9: Bioenergy: Challenges Ahead and Future -- 9.1 Introduction -- 9.2 Bioenergy Current Status -- 9.2.1 Biomass Potential -- 9.2.2 Limitations of Biomass Potential -- 9.3 Why Bioenergy? -- 9.3.1 Reasons -- 9.3.2 Effects -- 9.4 Biomass Conversion Technologies: Problems and Solutions -- 9.5 Environmental Impact: A Reason to Shift -- 9.6 Future -- 9.6.1 Alternative Fuels -- 9.6.2 Bioenergy Future Vs Current Scenario -- 9.6.3 Dedicated Biomass for Energy -- 9.7 Prevention of Locking-in of Bioenergy -- 9.8 Biofuels in Aviation Market -- 9.9 Algal Systems as Perspectives for Bioenergy -- 9.9.1 Biology and Adaptation -- 9.9.2 Cultivation -- 9.9.3 Future -- 9.10 Sustainability of Bioenergy -- 9.10.1 Sustainability Directives -- 9.10.2 Beyond 2021 -- 9.11 Conclusion -- References.Chapter 10: Production of Bioethanol from Mixed Lignocellulosic Biomass: Future Prospects and Challenges.Clean energy production technologies.Biomass energySynthetic fuelsAgricultural wastes as fuelBiomass energy.Synthetic fuels.Agricultural wastes as fuel.662.8Srivastava Neha1981-Mishra P. K.Verma BhawnaMiAaPQMiAaPQMiAaPQBOOK9910637721603321Agroindustrial waste for green fuel application3089811UNINA