04255nam 22006255 450 991063771300332120251113185401.03-031-13379-X10.1007/978-3-031-13379-4(MiAaPQ)EBC7165634(Au-PeEL)EBL7165634(CKB)25913865700041(PPN)267813511(OCoLC)1357018833(DE-He213)978-3-031-13379-4(EXLCZ)992591386570004120221221d2023 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPartial Differential Equations An Introduction to Analytical and Numerical Methods /by Wolfgang Arendt, Karsten Urban1st ed. 2023.Cham :Springer International Publishing :Imprint: Springer,2023.1 online resource (463 pages)Graduate Texts in Mathematics,2197-5612 ;294Print version: Arendt, Wolfgang Partial Differential Equations Cham : Springer International Publishing AG,c2023 9783031133787 Includes bibliographical references and index.1 Modeling, or where do differential equations come from -- 2 Classification and characteristics -- 3 Elementary methods -- 4 Hilbert spaces -- 5 Sobolev spaces and boundary value problems in dimension one -- 6 Hilbert space methods for elliptic equations -- 7 Neumann and Robin boundary conditions -- 8 Spectral decomposition and evolution equations -- 9 Numerical methods -- 10 Maple®, or why computers can sometimes help -- Appendix.This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach. A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessible introduction to Hilbert spaces and the spectral theorem lay the foundation for advanced methods. Sobolev spaces are presented first in dimension one, before being extended to arbitrary dimension for the study of elliptic equations. An extensive chapter on numerical methods focuses on finite difference and finite element methods. Computer-aided calculation with Maple™ completes the book. Throughout, three fundamental examples are studied with different tools: Poisson’s equation, the heat equation, and the wave equation on Euclidean domains. The Black–Scholes equation from mathematical finance is one of several opportunities for extension. Partial Differential Equations offers an innovative introduction for students new to the area. Analytical and numerical tools combine with modeling to form a versatile toolbox for further study in pure or applied mathematics. Illuminating illustrations and engaging exercises accompany the text throughout. Courses in real analysis and linear algebra at the upper-undergraduate level are assumed.Graduate Texts in Mathematics,2197-5612 ;294Differential equationsNumerical analysisFunctional analysisDifferential EquationsNumerical AnalysisFunctional AnalysisDifferential equations.Numerical analysis.Functional analysis.Differential Equations.Numerical Analysis.Functional Analysis.515.353Arendt Wolfgang1950-54059Urban KarstenKennedy James B.1932-MiAaPQMiAaPQMiAaPQBOOK9910637713003321Partial differential equations3090577UNINA