12239nam 22006133 450 991063390920332120231222161014.01-119-50824-X1-119-50822-31-119-50823-1(PPN)27402408X(CKB)4100000010858830(MiAaPQ)EBC6157416(Au-PeEL)EBL6157416(NjHacI)994100000010858830(BIP)062403693(OCoLC)1149041245(EXLCZ)99410000001085883020210901d2020 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierCarbon in Earth's InteriorNewark :American Geophysical Union,2020.©2020.1 online resource (373 pages)Geophysical Monograph ;v.2501-119-50826-6 Includes bibliographical references and index.Cover -- Title Page -- Copyright Page -- CONTENTS -- CONTRIBUTORS -- PREFACE -- Chapter 1 Pressure-Induced sp2-sp3 Transitions in Carbon-Bearing Phases -- 1.1. INTRODUCTION -- 1.2. ELEMENTAL CARBON -- 1.2.1. Metastable Phases -- 1.2.2. Phase Diagram at High Temperature and in the TPa Pressure Range -- 1.3. CARBONATES -- 1.3.1. (Mg,Fe) Carbonates -- 1.3.2. Ca Carbonates and Ca(Mg,Fe) Carbonates -- 1.4. HYDROCARBONS -- ACKNOWLEDGMENTs -- REFERENCES -- Chapter 2 High-Pressure Carbonaceous Phases as Minerals -- 2.1. INTRODUCTION -- 2.1.1. High-Pressure Minerals in Meteorites and Impactites -- 2.2. CARBONACEOUS PHASES AS INCLUSION IN DIAMOND: ELEMENTS AND CARBIDES -- 2.2.1. Diamond in Diamond: Indication for Methane Breakdown in the Lithospheric Mantle -- 2.2.2. Carbides: Possible Indicators of Reducing Conditions in the Transition Zone and Lower Mantle -- 2.3. OXIDES AND CARBONATES -- 2.3.1. Carbon Dioxide -- 2.3.2. Carbonates -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 3 Phase and Melting Relations of Fe3C to 300 GPa and Carbon in the Core -- 3.1. INTRODUCTION -- 3.2. EXPERIMENTAL PROCEDURE -- 3.2.1. Sample Preparations -- 3.2.2. In-Situ X-Ray Diffraction Experiments -- 3.2.3. Quench Experiment and Sample Analysis -- 3.3. RESULTS -- 3.3.1. In-Situ X-Ray Diffraction Experiments -- 3.3.2. Textual Observations and Chemical Analysis of the Recovered Sample -- 3.4. DISCUSSION -- ACKNOWLEDGMENTS -- AUTHOR CONTRIBUTIONS -- REFERENCES -- Chapter 4 Structure and Properties of Liquid Fe-C Alloys at High Pressures by Experiments and First-Principles Calculations -- 4.1. INTRODUCTION -- 4.2. STRUCTURE OF FE‐C AND FE-NI-C LIQUIDS -- 4.2.1. Experimental Results -- 4.2.2. Computational Results -- 4.3. RELATIONSHIP BETWEEN PROPERTY AND STRUCTURE AND GEOPHYSICAL IMPLICATIONS -- 4.4. CONCLUSIONs -- ACKNOWLEDGMENTS -- REFERENCES.Chapter 5 A Geologic Si-O-C Pathway to Incorporate Carbon in Silicates -- 5.1. INTRODUCTION AND BACKGROUND -- 5.2. HYPOTHESIS: THE GEOLOGIC SI-O-C PATHWAY -- 5.2.1. Geologic Evidence for the Si-O-C Pathway -- 5.3. UNANSWERED QUESTIONS AND FUTURE RESEARCH DIRECTIONS -- ACKNOWLEDGMENTs -- REFERENCES -- Chapter 6 Structural and Chemical Modifications of Carbon Dioxide on Transport to the Deep Earth -- 6.1. INTRODUCTION -- 6.2. MOLECULAR CRYSTAL PHASES -- 6.3. EXTENDED COVALENT PHASES -- 6.4. MELTING LINE -- 6.5. CARBON DIOXIDE STABILITY VERSUS DISSOCIATION -- 6.6. CONCLUSIONS -- ACKNOWLEDGMENTs -- REFERENCES -- Chapter 7 Carbon Redox Chemistry: Deep Carbon Dioxide and Carbonates -- 7.1. INTRODUCTION -- 7.2. EXPERIMENTAL METHOD -- 7.3. RESULTS -- 7.3.1. Carbon Oxidation -- 7.3.2. Carbonate Formation -- 7.3.3. Ionization of XCO2 -- 7.3.4. Pressure-Induced Amorphization -- 7.4. DISCUSSION -- 7.5. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 8 Crystallization of Water Mediated by Carbon -- 8.1. INTRODUCTION -- 8.2. METHODS -- 8.3. HETEROGENEOUS ICE NUCLEATION FACILITATED BY GRAPHITIC CARBON -- 8.3.1. Verification of Heterogeneous Classical Nucleation Theory -- 8.3.2. Molecular Insight Into the Complex Nature of Heterogeneous Ice Nucleation -- 8.3.3. Role of Local Ordering of Water in Ice Nucleation -- 8.4. NUCLEATION OF GAS HYDRATE -- 8.5. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 9 Structures and Crystal Chemistry of Carbonate at Earth's Mantle Conditions -- 9.1. INTRODUCTION -- 9.2. EXPERIMENTAL STRUCTURAL INVESTIGATION ON CARBONATES: METHODS -- 9.3. EXPERIMENTAL DETERMINATION OF CARBONATE STRUCTURES: CASE STUDIES -- 9.3.1. Calcium Carbonates With CO3 Units -- 9.3.2. Carbonates with [4]-Coordination Carbon -- 9.3.3. Alkali and Mixed-Alkali Carbonates -- 9.4. CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES.Chapter 10 Nitrogen Diffusion in Calcite -- 10.1. INTRODUCTION -- 10.2. METHODS -- 10.2.1. Experimental Procedure -- 10.2.2. Nuclear Reaction Analysis (NRA) of Nitrogen -- 10.3. RESULTS -- 10.3.1. O, C, and Noble Gas Diffusion in Carbonates -- 10.4. GEOLOGICAL IMPLICATIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 11 High-Pressure Transformations and Stability of Ferromagnesite in the Earth's Mantle -- 11.1. INTRODUCTION -- 11.2. COMPRESSION OF MG-FE RHOMBOHEDRAL CARBONATE -- 11.3. HIGH-PRESSURE POLYMORPHISM OF FERROMAGNESITE -- 11.3.1. Evidence for Tetrahedrally Coordinated Carbon -- 11.3.2. Self-Redox Reactions in Fe2+‐Bearing Carbonates -- 11.4. CONCLUSIONS AND OUTLOOKS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 12 Spin Transition of Iron in Deep-Mantle Ferromagnesite -- 12.1. INTRODUCTION -- 12.2. FE2+ SPIN TRANSITION IN (MG,FE)CO3 -- 12.2.1. Crystal Field Theory and Parameters of the Spin Transition in Ferromagnesite -- 12.2.2. Characterizations of the Fe2+ Spin Transition in (Mg,Fe)CO3 at High Pressure -- 12.2.3. The Effects of the Fe2+ Spin Transition on Physical Properties of (Mg,Fe)CO3 -- 12.3. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 13 High-Pressure Na-Ca Carbonates in the Deep Carbon Cycle -- 13.1. CARBONATES IN SUBDUCTION INFLUX OF CARBON -- 13.2. SUBDUCTED CARBONATES IN THE UPPER MANTLE -- 13.3. SUBDUCTED CARBONATES IN THE MANTLE TRANSITION ZONE -- 13.4. CRYSTAL CHEMISTRY OF HIGH-PRESSURE NA-CA CARBONATES -- 13.5. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 14 Phase Diagrams of Carbonate Materials at High Pressures, with Implications for Melting and Carbon Cycling in the Deep Earth -- 14.1. INTRODUCTION -- 14.2. EXPERIMENTAL METHODS -- 14.3. PHASE DIAGRAMS OF CARBONATES -- 14.3.1. Melting and Phase Transitions in Simple Carbonate Systems -- 14.3.2. Binary Carbonate Systems at High Pressures.14.3.3. Ternary Carbonate Phase Diagrams -- 14.4. IMPLICATIONS FOR MELTING IN THE DEEP EARTH'S MANTLE -- 14.4.1. Carbonates in the Complex Experimental Systems -- 14.4.2. The Lower Temperature Stability Limits of Carbonatite Melts at 100-200 km Depths -- 14.4.3. Implication of Carbonate Phase Diagrams to Mantle‐Derived Carbonatite Inclusions -- 14.4.4. Carbonates in the Lower Mantle -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 15 Reactive Preservation of Carbonate in Earth's Mantle Transition Zone -- 15.1. INTRODUCTION -- 15.2. MATERIALS AND METHODS -- 15.2.1. High-Pressure Experiments -- 15.2.2. Raman Spectroscopy Analysis -- 15.2.3. Electron Microprobe Analyses -- 15.3. RESULTS -- 15.4. DISCUSSION -- 15.4.1. Chemical Stability of Carbonates in MTZ -- 15.4.2. Water Enhances Carbonate-Silicate Reaction -- 15.4.3. Reactive Preservation of Carbonate -- 15.4.4. Implications for Deep Carbon Cycle -- 15.5. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 16 Carbon Speciation and Solubility in Silicate Melts -- 16.1. INTRODUCTION -- 16.2. EXPERIMENTS ON SILICATE MELTS -- 16.2.1. Speciation of Carbon -- 16.2.2. Solubility of Carbon -- 16.3. SIMULATIONS OF SILICATE MELTS -- 16.3.1. Solubility of Carbon Dioxide in the Silicate Melt -- 16.3.2. Carbon Coordinated by Oxygen -- 16.3.3. Carbon Complexes -- 16.3.4. Elemental Diffusivities -- 16.3.5. Equation of State -- 16.3.6. Diamond Formation -- 16.4. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 17 The Effect of Variable Na/K on the CO2 Content of Slab-Derived Rhyolitic Melts -- 17.1. INTRODUCTION -- 17.2. METHODS -- 17.2.1. Starting Material -- 17.2.2. Experimental Technique -- 17.2.3. Analytical Techniques -- 17.3. RESULTS -- 17.3.1. Texture and Major Element Composition -- 17.3.2. Dissolved CO2 and H2O -- 17.4. DISCUSSION.17.4.1. Composition-Dependent CO2 Dissolution in Silicate Melt: Comparison to Previous Studies -- 17.4.2. Parameterization -- 17.4.3. Implications for Slab-Mantle CO2 Transfer in Subduction Zones -- 17.5. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 18 Hydrous Carbonatitic Liquids Drive CO2 Recycling From Subducted Marls and Limestones -- 18.1. INTRODUCTION -- 18.2. MODELING IMPURE MARBLES: THE SYSTEM CaO-Al2O3-SiO2-H2O-CO2 -- 18.3. EXPERIMENTAL AND ANALYTICAL METHODS -- 18.4. RESULTS -- 18.4.1. Microstructural Analysis -- 18.4.2. Chemistry of Precipitates and Composition of the Liquid -- 18.5. HYDROUS-CARBONATITIC LIQUIDS FORM AT SUB-ARCS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 19 The Viscosity of Carbonate-Silicate Transitional Melts at Earth's Upper Mantle Pressures and Temperatures, Determined by the In Situ Falling-Sphere Technique -- 19.1. INTRODUCTION -- 19.2. MATERIALS AND METHODS -- 19.3. RESULTS -- 19.4. DISCUSSION -- 19.4.1. Effect of Pressure and Temperature on the Viscosity Data -- 19.4.2. Implications for the Transport of Oxidized Carbon in the Upper Mantle -- 19.5. CONCLUSIONS -- ACKNOWLEDGMENTS -- SUPPLEMENTAL MATERIAL -- REFERENCES -- Chapter 20 Mixed Fluids of Water and Carbon Dioxide -- 20.1. INTRODUCTION -- 20.2. AVAILABLE DATA -- 20.3. MISCIBILITIES -- 20.4. SPECIATION -- 20.5. EQUATION OF STATE -- 20.6. AVENUES FOR PROGRESS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 21 Experimental Determination of Calcite Solubility in H2O-KCl-NaCl-LiCl Solutions at 700°C and 8 kbar -- 21.1. INTRODUCTION -- 21.2. METHODS -- 21.2.1. Starting Materials -- 21.2.2. Capsule Assembly -- 21.2.3. Experimental Apparatus and Setup -- 21.2.4. Solubility Determination -- 21.2.5. Salt Concentration Notation -- 21.3. RESULTS -- 21.3.1. Textures -- 21.3.2. Solubility in Single-Salt Solutions -- 21.3.3. Solubility in Mixed-Salt Solutions.21.4. DISCUSSION.This book is Open Access. A digital copy can be downloaded for free from Wiley Online Library. Explores the behavior of carbon in minerals, melts, and fluids under extreme conditions Carbon trapped in diamonds and carbonate-bearing rocks in subduction zones are examples of the continuing exchange of substantial carbon between Earth's surface and its interior. However, there is still much to learn about the forms, transformations, and movements of carbon deep inside the Earth. Carbon in Earth's Interior presents recent research on the physical and chemical behavior of carbon-bearing materials and serves as a reference point for future carbon science research. Volume highlights include: Data from mineral physics, petrology, geochemistry, geophysics, and geodynamics Research on the deep carbon cycle and carbon in magmas or fluids Dynamics, structure, stability, and reactivity of carbon-based natural materials Properties of allied substances that carry carbon Rates of chemical and physical transformations of carbon The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity.Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.Geophysical MonographGeochemistryCongressesGeophysicsScienceGeochemistry551.9Lin Jung-Fu1272238Manning Craig E1272239Mao Wendy L1272240MiAaPQMiAaPQMiAaPQBOOK9910633909203321Carbon in Earth's Interior2996692UNINA