04662nam 22007695 450 991063247790332120251229071110.03-031-16427-X10.1007/978-3-031-16427-9(MiAaPQ)EBC7147234(Au-PeEL)EBL7147234(CKB)25483514400041(PPN)266351077(BIP)86491153(BIP)85342947(DE-He213)978-3-031-16427-9(EXLCZ)992548351440004120221126d2022 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierNew Frontiers in Bayesian Statistics BAYSM 2021, Online, September 1–3 /edited by Raffaele Argiento, Federico Camerlenghi, Sally Paganin1st ed. 2022.Cham :Springer International Publishing :Imprint: Springer,2022.1 online resource (122 pages)Springer Proceedings in Mathematics & Statistics,2194-1017 ;405Includes index.Print version: Argiento, Raffaele New Frontiers in Bayesian Statistics Cham : Springer International Publishing AG,c2023 9783031164262 1 Andrej Srakar, Approximate Bayesian algorithm for tensor robust principal component analysis -- 2 Yuanqi Chu, Xueping Hu, Keming Yu, Bayesian Quantile Regression for Big Data Analysis -- 3 Peter Strong, Alys McAlphine, Jim Smith, Towards A Bayesian Analysis of Migration Pathways using Chain Event Graphs of Agent Based Models -- 4 Giorgos Tzoumerkas, Dimitris Fouskakis, Power-Expected-Posterior Methodology with Baseline Shrinkage Priors -- 5 Mica Teo, Sara Wade, Bayesian nonparametric scalar-on-image regression via Potts-Gibbs random partition models -- 6 Alessandro Colombi, Block Structured Graph Priors in Gaussian Graphical Models -- 7 Jessica Pavani, Paula Moraga, A Bayesian joint spatio-temporal model for multiple mosquito-borne diseases -- 8 Ivan Gutierrez, Luis Gutierrez, Danilo Alvare, A Bayesian nonparametric test for cross-group differences relative to a control -- 9 Francesco Gaffi, Antonio Lijoi, Igor Pruenster, Specification of the base measure of nonparametric priors via random means -- 10 Matteo Pedone, Raffaele Argiento, Francesco Claudio Stingo, Bayesian Nonparametric Predictive Modeling for Personalized Treatment Selection -- 11 Gabriel Calvo, carmen armero, Virgilio Gómez-Rubio, Guido Mazzinari, Bayesian growth curve model for studying the intra-abdominal volume during pneumoperitoneum for laparoscopic surgery.This book presents a selection of peer-reviewed contributions to the fifth Bayesian Young Statisticians Meeting, BaYSM 2021, held virtually due to the COVID-19 pandemic on 1-3 September 2021. Despite all the challenges of an online conference, the meeting provided a valuable opportunity for early career researchers, including MSc students, PhD students, and postdocs to connect with the broader Bayesian community. The proceedings highlight many different topics in Bayesian statistics, presenting promising methodological approaches to address important challenges in a variety of applications. The book is intended for a broad audience of people interested in statistics, and provides a series of stimulating contributions on theoretical, methodological, and computational aspects of Bayesian statistics.Springer Proceedings in Mathematics & Statistics,2194-1017 ;405Mathematical statisticsStochastic processesStochastic modelsStochastic analysisMarkov processesMathematical StatisticsStochastic NetworksStochastic ModellingStochastic AnalysisMarkov ProcessStochastic ProcessesMathematical statistics.Stochastic processes.Stochastic models.Stochastic analysis.Markov processes.Mathematical Statistics.Stochastic Networks.Stochastic Modelling.Stochastic Analysis.Markov Process.Stochastic Processes.519.542519.542Argiento RaffaeleCamerlenghi FedericoPaganin SallyMiAaPQMiAaPQMiAaPQBOOK9910632477903321New frontiers in Bayesian Statistics3088801UNINA