05393nam 2200457 450 991063109640332120230330215037.03-031-15345-6(MiAaPQ)EBC7141569(Au-PeEL)EBL7141569(CKB)25360915200041(OCoLC)1351199588(PPN)266355889(EXLCZ)992536091520004120230330d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierLifetime reliability-aware design of integrated circuits /Mohsen Raji, Behnam GhavamiCham, Switzerland :Springer,[2023]©20231 online resource (113 pages)Print version: Raji, Mohsen Lifetime Reliability-Aware Design of Integrated Circuits Cham : Springer International Publishing AG,c2022 9783031153440 Includes bibliographical references and index.Intro -- Preface -- Acknowledgment -- Contents -- Impacts of Process Variations and Aging on Lifetime Reliability of Flip-Flops -- 1 Introduction -- 2 Analysis Methodology -- 2.1 Flip-Flop Topologies Under Study -- 2.2 Timing Parameters of Flip-Flops -- 2.3 Aging Effects -- 2.4 BTI Model -- 2.5 Process Variation Model -- 3 Vth Degradation Analysis Approach -- 4 Timing Yield-Aware Lifetime Reliability Metric -- 5 Experimental Results -- 5.1 Characterization Setup -- 5.2 FF Characterization Results -- 5.3 Aging Impacts on Lifetime Reliability -- 5.4 Power-Delay-Product Comparison of FFs -- 6 Discussion and Conclusions -- References -- Restructuring-Based Lifetime Reliability Improvement of Nanoscale Master-Slave Flip-Flops -- 1 Introduction -- 2 Proposed Lifetime Reliability Improvement Approach -- 2.1 Basic Idea -- 2.2 Technique Application to TGFF -- 2.3 Technique Application to TGFFV2 -- 2.4 Technique Application to WPMS -- 2.5 Technique Application to C2MOS -- 2.6 Transistor Sizing -- 3 Experimental Results -- 3.1 Characterization Setup -- 3.2 Lifetime Reliability Increase -- 3.3 Cost Evaluation -- 4 Conclusion -- References -- Lifetime Reliability Improvement of Pulsed Flip-Flops -- 1 Introduction -- 2 Proposed Lifetime Improvement Approach -- 2.1 Basic Idea -- 2.2 Application of the Technique to HLFF -- 2.3 Application of the Technique to SDFF -- 2.4 Application of Technique to USDFF -- 2.5 Technique Application to XCFF -- 3 Experimental Results -- 3.1 Characterization Setup -- 3.2 FF Characterization Results -- 3.3 Lifetime Reliability of Both Structures -- 3.4 Lifetime Reliability Increase -- 3.5 Cost Evaluation -- 4 Conclusion -- References -- Gate Sizing-Based Lifetime Reliability Improvement of Integrated Circuits -- 1 Introduction -- 2 Proposed Framework -- 2.1 Statistical Gate Delay Model Under the Joint Effects of NBTI and PV.2.1.1 Initial Gate Delay Under PV Effects -- 2.1.2 Delay Degradation Under the Joint Effects of NBTI and PV Considering Spatial Correlation -- 2.2 Statistical Circuit-Level Delay Computation Considering the Joint Effects of NBTI and PV -- 2.2.1 Arrival Time Propagation -- 2.2.2 Merging Arrival Times -- 2.3 Incremental Criticality-Based Statistical Gate-Sizing Algorithm -- 3 Experimental Results -- 3.1 Circuit Lifetime Reliability Optimization -- 4 Conclusion -- References -- Joint Timing Yield and Lifetime Reliability Optimization of Integrated Circuits -- 1 Introduction -- 2 Problem Formulation -- 3 Gate-Level Delay Model Under the Joint Effects of NBTI and PV -- 3.1 Initial Gate Delay Under PV -- 3.2 Delay Degradation Under Joint Effects of NBTI and PV -- 4 Gate Sizing Method -- 4.1 First Phase: Initial Delay Optimization -- 4.2 Second Phase: Guardband Optimization -- 4.2.1 Guiding Metrics -- 4.2.2 Multiobjective Ranking -- 5 Experimental Results -- 5.1 Effect of Timing Yield Optimization -- 5.2 Evaluation of the Delay Degradation-Aware Gate Criticality Metric -- 6 Conclusion -- References -- Lifetime Reliability Optimization Algorithms of Integrated Circuits Using Dual-Threshold Voltage Assignment -- 1 Introduction -- 2 PV- and BTI-Aware Gate Delay Model -- 3 Guardband-Aware Lifetime Reliability (GAR) Metric -- 4 Dual-Threshold Voltage Assignment Technique -- 4.1 Motivation Example -- 4.2 Vth Assignment Technique Overhead -- 5 Lifetime Reliability Optimization Flow -- 5.1 Process Variation- and BTI-Aware Criticality Metric -- 5.2 Optimization Algorithm-Based DVth Assignment Policy -- 5.2.1 Optimization Approach #1: Greedy-Based Method (GeRO) -- 5.2.2 Optimization Approach #2: Simulated-Annealing-Based Method (SARO) -- 5.2.3 Optimization Approach #3: Sensitivity-Based Method (TIRO) -- 6 Experimental Results.6.1 PV- and BTI-Aware Delay Degradation Model Verification -- 6.2 Lifetime Reliability Analysis -- 6.3 Lifetime Reliability Optimization -- 6.4 Algorithm Computation Complexity and Runtime -- 7 Conclusion -- References -- Index.Integrated circuitsReliabilityIntegrated circuitsReliability.354.81150006Raji Mohsen1251997Ghavami BehnamMiAaPQMiAaPQMiAaPQBOOK9910631096403321Lifetime reliability-aware design of integrated circuits3083878UNINA