09830nam 2200469 450 991062727980332120230103211042.03-030-99754-5(MiAaPQ)EBC7048634(Au-PeEL)EBL7048634(CKB)24273943200041(PPN)26390220X(EXLCZ)992427394320004120230103d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFluid mechanicsVolume 2 basic concepts and principles /Shiv KumarFourth edition.Cham, Switzerland :Springer,[2022]©20221 online resource (534 pages)Print version: Kumar, Shiv Fluid Mechanics (Vol. 2) Cham : Springer International Publishing AG,c2022 9783030997533 Includes bibliographical references and index.Intro -- Preface -- Acknowledgements -- Contents -- 1 Laminar Flow (Viscous Flow or Flow withLow Reynolds Number) -- 1.1 INTRODUCTION -- 1.2 LAMINAR AND TURBULENT FLOW -- 1.2.1 Laminar Flow -- 1.2.2 Turbulent Flow -- 1.3 REYNOLDS EXPERIMENT -- 1.4 EXPERIMENTAL DETERMINATION OF CRITICAL VELOCITY -- 1.5 STEADY LAMINAR FLOW THROUGH A CIRCULAR PIPE -- 1.5.1 Comparison between Hagen-Poiseuille Equation and Darcy's Formula -- 1.6 FLOW BETWEEN PARALLEL PLATES -- 1.6.1 Both Plates are Fixed -- 1.7 MOMENTUM CORRECTION FACTOR -- 1.8 KINETIC ENERGY CORRECTION FACTOR -- 1.9 POWER ABSORBED IN VISCOUS RESISTANCE -- 1.9.1 Journal Bearing -- 1.9.2 Foot-Step Bearing -- 1.9.3 Collar Bearing -- 1.10 DASH-POT MECHANISM: MOVEMENT OF A PISTON IN A DASH-POT -- 1.11 STOKES' LAW -- 1.12 MEASUREMENT OF VISCOSITY -- 1.12.1 Capillary Tube Viscometer -- 1.12.2 Rotating Cylinder Viscometer -- 1.12.3 Falling Sphere Viscometer -- 1.12.4 Industrial Viscometers -- 1.13 NAVIER-STOKES EQUATIONS OF MOTION -- 1.14 FLUIDIZATION -- 1.14.1 Conditions for Fluidization -- 1.14.2 Types of Fluidization -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 2 Turbulent Flow -- 2.1 INTRODUCTION -- 2.2 TYPES OF VELOCITIES IN A TURBULENT FLOW -- 2.2.1 Relation between Various Velocities -- 2.2.2 Degree or Level of Turbulence -- 2.2.3 Intensity of Turbulence -- 2.3 CLASSIFICATION OF TURBULENCE -- 2.4 SHEAR STRESS IN TURBULENT FLOW -- 2.4.1 Reynolds Theory -- 2.4.2 Boussinesq Eddy-viscous Theory -- 2.4.3 Prandtl's Mixing Length Theory -- 2.4.4 Von-Karman's Theory -- 2.5 VELOCITY DISTRIBUTION LAW IN TURBULENT FLOW -- 2.5.1 Velocity Distribution in Laminar Region: Zone-I -- 2.5.2 Velocity Distribution in the Turbulent Region: Zone-II -- 2.5.3 Relation between umax and u -- 2.6 HYDRODYNAMICALLY SMOOTH AND ROUGH BOUNDARIES -- 2.6.1 Hydrodynamically Smooth Boundary -- 2.6.2 Hydrodynamically Rough Boundary.2.7 VELOCITY DISTRIBUTION IN TERMS OF MEAN VELOCITY -- 2.8 POWER LAW FOR VELOCITY DISTRIBUTION IN SMOOTH PIPES -- 2.9 DETERMINATION OF COEFFICIENT OF FRICTION f -- 2.10 THERMAL (HOT-WIRE AND HOT FILM) ANEMOMETERS -- 2.11 LASER DOPPLER VELOCIMETRY -- 2.11.1 Operating Principle -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 3 Boundary Layer Theory -- 3.1 INTRODUCTION -- 3.2 BOUNDARY LAYER FORMATION OVER A FLAT PLATE -- 3.2.1 Laminar Boundary Layer -- 3.2.2 Transition Boundary Layer -- 3.2.3 Turbulent Boundary Layer -- 3.2.4 Laminar Sub-layer -- 3 .3 BOUNDARY LAYER THICKNESS: δ -- 3.4 DISPLACEMENT THICKNESS: δ* -- 3.5 MOMENTUM THICKNESS: θ -- 3.6 ENERGY THICKNESS: δ** -- 3.7 DRAG FORCE ON A FLAT PLATE DUE TO BOUNDARY LAYER -- 3.8 ESTIMATION OF THE LAMINAR BOUNDARY LAYER THICKNESS -- 3.9 TURBULENT BOUNDARY LAYER ON A FLAT PLATE -- 3.10 BOUNDARY LAYER ON ROUGH SURFACES -- 3.11 SEPARATION OF BOUNDARY LAYER -- 3.12 CONTROL OF BOUNDARY LAYER SEPARATION -- 3.12.1 Suction Method -- 3.12.2 By Pass Method -- 3.12.3 Injection Method -- 3.12.4 Rotating of Cylinder Method -- 3.12.5 Streamlining of Body Shape -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 4 Flow Through Pipe -- 4.1 INTRODUCTION -- 4.2 ENERGY LOSSES IN PIPES -- 4.2.1 Major Losses -- 4.2.2 Minor Losses -- 4.3 SIPHON -- 4.4 PIPES IN SERIES: COMPOUND PIPES -- 4.5 CONCEPT OF EQUIVALENT LENGTH AND EQUIVALENT PIPE -- 4.5.1 Equivalent Length -- 4.5.2 Equivalent Pipe -- 4.6 PIPES IN PARALLEL -- 4.6.1 Three Pipes in Parallel -- 4.6.2 Four Pipes in Parallel -- 4.7 TRANSMISSION OF HYDRAULIC POWER THROUGH PIPELINES -- 4.7.1 Condition for Maximum Transmission Power -- 4.7.2 Maximum Efficiency of Transmission of Power -- 4.8 WATER HAMMER -- 4.8.1 Pressure Rise due to Gradual Closure of Valve -- 4.8.2 Pressure Rise due to Instantaneous Closure of Valve.4.8.3 Pressure Rise due to Instantaneous Closure of Valve in an Elastic Pipe -- 4.9 PIPE NETWORKS -- 4.9.1 Hardy Cross Method (HCM) -- 4.10 SURGE TANK -- 4.10.1 Types of Surge Tanks -- 4.11 THREE RESERVOIR PROBLEM -- 4.11.1 Exact Method -- 4.11.2 Trial and Error Method -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 5 Pipe Flow Measurement -- 5.1 INTRODUCTION -- 5.2 VENTURIMETER -- 5.3 ORIFICE METER OR ORIFICE PLATE -- 5.4 PITOT TUBE -- 5.5 CURRENT METER -- 5.6 ROTAMETER -- 5.7 BEND METER -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 6 Orifices and Mouthpieces -- 6.1 INTRODUCTION -- 6.2 TYPES OF ORIFICES -- 6.3 HYDRAULIC COEFFICIENTS -- 6.3.1 Coefficient of Contraction: Cc -- 6.3.2 Coefficient of Velocity: Cv -- 6.4 EXPERIMENTAL DETERMINATION OF HYDRAULIC COEFFICIENTS -- 6.4.1 Coefficient of Discharge: Cd -- 6.4.2 Coefficient of Contraction: Cc -- 6.5 SMALL AND LARGE ORIFICES -- 6.6 DISCHARGE THROUGH A SMALL RECTANGULAR ORIFICE -- 6.7 DISCHARGE THROUGH A LARGE RECTANGULAR ORIFICE -- 6.8 DISCHARGE THROUGH FULLY SUBMERGED ORIFICE -- 6.9 DISCHARGE THROUGH PARTIALLY SUBMERGED ORIFICE -- 6.10 CLASSIFICATION OF MOUTHPIECES -- 6.10.1 External Mouthpieces -- 6.10.2 Internal Mouthpiece -- 6.11 DISCHARGE THROUGH EXTERNAL CYLINDRICAL MOUTHPIECE -- 6.12 DISCHARGE THROUGH A CONVERGENT MOUTHPIECE -- 6.13 DISCHARGE THROUGH A CONVERGENT DIVERGENTMOUTHPIECE -- 6.14 DISCHARGE THROUGH AN INTERNAL MOUTHPIECE (RE-ENTRANT OR BORDA'S MOUTHPIECE) -- 6.14.1 Borda's Mouthpiece Running Free -- 6.14.2 Borda's Mouthpiece Running Full -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 7 Flow Past Submerged Bodies -- 7.1 INTRODUCTION -- 7.2 DRAG AND LIFT -- 7.3 TYPES OF DRAG FORCE -- 7.3.1 Streamlined and Bluff Bodies -- 7.4 EXPRESSION FOR DRAG AND LIFT -- 7.4.1 Drag Force: FD -- 7.4.2 Lift Force: FL -- 7.4.3 Co-efficient of Drag: CD -- 7.4.4 Co-efficient of Lift: CL.7.5 DRAG ON A SPHERE -- 7.6 DRAG ON A CYLINDER -- 7.7 LIFT AND CIRCULATION ON A CIRCULAR CYLINDER -- 7.8 MAGNUS EFFECT: LIFT GENERATED BY SPINNING -- 7.9 LIFT ON AN AIRFOIL -- 7.9.1 Steady State of a Flying Object -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 8 Flow Through Open Channels -- 8.1 INTRODUCTION -- 8.2 GEOMETRICAL TERMINOLOGIES: FLOW THROUGH OPEN CHANNELS -- 8.3 TYPES OF FLOW IN OPEN CHANNELS -- 8.3.1 Steady and Unsteady Flow -- 8.3.2 Uniform and Non-uniform Flow -- 8.3.3 Laminar and Turbulent Flow -- 8.3.4 Sub-critical, Critical and Super-critical Flow -- 8.4 CHEZY'S FORMULA -- 8.5 EMPIRICAL RELATIONS FOR DETERMINATION OF CHEZY CONSTANT -- 8.6 MOST ECONOMICAL SECTION -- 8.6.1 Most Economical Rectangular Channel -- 8.6.2 Most Economical Trapezoidal Channel -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 9 Notches and Weirs -- 9.1 INTRODUCTION -- 9.2 DIFFERENCE BETWEEN NOTCH AND ORIFICE -- 9.3 DIFFERENCE BETWEEN A NOTCH AND A WEIR -- 9.4 CLASSIFICATION OF NOTCHES AND WEIRS -- 9.5 DISCHARGE OVER A RECTANGULAR NOTCH OR WEIR -- 9.6 TRIANGULAR NOTCH OR V-NOTCH -- 9.7 DISCHARGE OVER A TRAPEZOIDAL NOTCH OR WEIR -- 9.8 DISCHARGE OVER A STEPPED NOTCH -- 9.9 ADVANTAGES OF TRIANGULAR NOTCH OVER RECTANGULAR NOTCH -- 9.10 EFFECT ON THE DISCHARGE OVER A NOTCH DUE TO AN ERROR IN THE MEASUREMENT OF HEAD -- 9.10.1 For a Rectangular Notch -- 9.10.2 For a Triangular Notch -- 9.11 CIPOLLETTI WEIR -- 9.12 FRANCIS'S FORMULA FOR RECTANGULAR WEIR WITH END CONTRACTIONS -- 9.13 VELOCITY OF APPROACH -- 9.14 VENTILATION OF WEIRS -- 9.15 DISCHARGE OVER A BROAD CRESTED WEIR -- 9.16 DISCHARGE OVER A SUBMERGED WEIR -- 9.17 OGEE WEIR -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- 10 Compressible Flow -- 10.1 INTRODUCTION -- 10.2 EQUATION OF STATE -- 10.3 THERMODYNAMIC PROCESSES -- 10.3.1 Isothermal Process [T = c] -- 10.3.2 Isobaric Process [ p = c].10.3.3 Isochoric Process (or Isometric Process) [V = c] -- 10.3.4 Adiabatic Process [ pvγ = c ] -- 10.3.5 Polytropic Process [pvn = c] -- 10.4 STEADY AND UNSTEADY FLOW -- 10.5 UNIFORM AND NON-UNIFORM FLOW -- 10.6 COMPRESSIBLE AND INCOMPRESSIBLE FLOW -- 10.6.1 Compressible Flow [ρ ≠ c] -- 10.6.2 Incompressible Flow (ρ = c). -- 10.7 RATE OF FLOW -- 10.8 CONTINUITY EQUATION -- 10.9 STEADY FLOW ENERGY EQUATION [SFEE] -- 10.10 STAGNATION STATE -- 10.11 VELOCITY OF SOUND WAVE IN COMPRESSIBLE FLUIDS -- 10.11.1 Velocity of Sound (a) in terms of Bulk Modulus of Elasticity (K) -- 10.12 VELOCITY OF SOUND IN AN IDEAL GAS -- 10.13 PROPAGATION OF PRESSURE WAVES (OR DISTURBANCES IN A COMPRESSIBLE FLUID) -- 10.14 NOZZLE AND DIFFUSER -- 10.15 FLOW THROUGH NOZZLE -- 10.16 NOZZLES OPERATING IN THE OFF-DESIGN CONDITION -- 10.17 NORMAL SHOCKS -- 10.17.1 Flow of Perfect Gases with Heat-transfer (Rayleigh Flow) -- 10.17.2 Flow of Perfect Gases with Friction (Fanno Flow) -- SUMMARY -- ASSIGNMENT - 1 -- ASSIGNMENT - 2 -- References -- Appendices -- Index.Fluid mechanicsFluid mechanics.620.106Shiv Kumar1949-1259533MiAaPQMiAaPQMiAaPQBOOK9910627279803321Fluid mechanics2999046UNINA