10789nam 2200505 450 991062432060332120230318172425.03-031-14486-4(MiAaPQ)EBC7130742(Au-PeEL)EBL7130742(CKB)25270826400041(PPN)266355641(EXLCZ)992527082640004120230318d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMarine analytical chemistry /Julián Blasco, Antonio Tovar-Sánchez, editorsCham, Switzerland :Springer,[2023]©20231 online resource (459 pages)Print version: Blasco, Julián Marine Analytical Chemistry Cham : Springer International Publishing AG,c2022 9783031144851 Includes bibliographical references.Intro -- Preface -- Contents -- 1: Carbonate System Species and pH -- 1.1 Introduction -- 1.1.1 Global Carbon Cycle -- 1.1.2 Carbon Essential Ocean Variables -- 1.1.3 Marine Carbonate System -- 1.1.4 Uncertainties in Measured and Calculated Carbonate System Variables -- 1.2 Sampling Procedure: Commonalities for Marine Carbon System Parameters -- 1.3 Consistency and Accuracy of Analytical Techniques: The Importance of Certified Reference Materials -- 1.4 Methodologies for the Analytical Determination of Key Marine Carbon System Variables -- 1.4.1 Dissolved Inorganic Carbon -- Definition -- 1.4.1.1 CO2 Extraction -- 1.4.1.2 Infrared Detection -- Principle -- Technical Equipment -- Methodological Procedure/Computation and Quality Control -- 1.4.1.3 Coulometric Titration -- Principle -- Technical Equipment/Methodological Procedure -- Computation and Quality Control -- Quality Control -- 1.4.2 pH -- Definition -- 1.4.2.1 Spectrophotometric Method -- Principle -- Technical Equipment -- Methodological Procedure -- Dye Selection and Preparation -- Delta R -- 1.4.3 Total Alkalinity -- Definition -- 1.4.3.1 Titration Methodology -- 1.4.3.2 Method Considerations -- 1.4.3.3 Practical Example -- 1.5 Conclusions, Summary, and Future Insights -- References -- 2: Dissolved Organic Matter -- 2.1 Introduction -- 2.2 Sample Collection and Preservation -- 2.2.1 Sampling, Processing and Preservation for Bulk DOM Analyses -- 2.2.2 Sampling Processing and Preservation for Molecular DOM Analyses -- 2.3 Bulk DOM Characterization -- 2.3.1 Elemental Analyses -- 2.3.1.1 Wet Oxidation -- 2.3.1.2 High-Temperature Oxidation (HTO) -- 2.3.2 Optical Analyses -- 2.3.2.1 Measuring CDOM -- 2.3.2.2 Processing CDOM Measurements -- 2.3.2.3 Measuring FDOM -- 2.3.2.4 Processing of FDOM Measurements -- 2.4 Fractionation and Isolation -- 2.4.1 Ultrafiltration.2.4.2 Solid-Phase Extraction -- 2.4.3 Coupled Reverse Osmosis/Electrodialysis -- 2.5 Molecular Characterization -- 2.5.1 Ultrahigh-Resolution Mass Spectrometry -- 2.5.1.1 Ionization Techniques for FT-ICR-MS Analysis -- 2.5.1.2 FT-ICR-MS Analysis -- 2.5.1.3 Applications and Visualizations to Assess DOM Complexity -- 2.5.1.4 Data Processing -- 2.5.1.5 Limitations -- 2.5.2 Nuclear Magnetic Resonance Spectroscopy -- 2.5.2.1 Solid- Vs. Liquid-State NMR Spectroscopy of Marine DOM Samples -- 2.5.2.2 One-Dimensional Solid- and Liquid-State NMR Spectroscopy -- 2.5.2.3 Two-Dimensional Liquid-State NMR Studies -- References -- 3: Trace Metals -- 3.1 Introduction -- 3.1.1 Trace Metals in the Ocean -- 3.1.2 Trace Metal Concentrations and Distributions -- 3.1.3 Pioneering Marine Trace Metal Biogeochemistry -- Box 3.1: Technical Advances and Trace Metal Clean Techniques -- 3.1.4 Future Challenges in Marine Trace Metal Biogeochemistry -- 3.2 Trace Metal Clean Procedures -- Box 3.2: Evolution of Trace Metal Clean Procedures -- 3.2.1 Trace Metal Clean Environment -- 3.2.2 Trace Metal Clean Practices -- Box 3.3: Trace Metal Clean Practices -- 3.2.3 Trace Metal Clean Sample Bottles -- 3.2.4 Trace Metal Cleaning Procedures for Sample Bottles -- 3.2.5 Trace Metal Clean Reagents -- 3.3 Trace Metal Clean Sample Collection -- 3.3.1 Dissolved Trace Metal Sampling -- 3.3.1.1 Depth Profile Sampling -- Discrete Bottle Sampler Systems -- Box 3.4 Cleaning Bottle Samplers -- Pumping System on CTD Rosette -- Moored in Situ Serial Samplers -- ROV-Based Discrete Samplers -- 3.3.1.2 Surface Sampling -- Discrete Bottle Samplers -- Continuous Flow Samplers -- Passive Samplers -- Box 3.5: Limitations of Passive Sampling Devices -- Sea Surface Microlayer (SML) Sampler -- Pole Sampler -- 3.3.2 Particulate Trace Metal Sampling -- 3.3.2.1 Bottle Sampler Collection.3.3.2.2 In Situ Filtration -- 3.4 Trace Metal Clean Sample Handling and Storage -- 3.4.1 Dissolved Trace Metal Samples -- 3.4.2 Size-Fractionated Dissolved Trace Metal Samples -- 3.4.3 Particulate Trace Metal Samples -- Box 3.6: Ultrafiltration for Colloids and Particulates -- 3.5 Sample Processing and Analytical Techniques -- 3.5.1 Trace Metal Concentration Measurement Techniques -- 3.5.1.1 ICP-MS Techniques -- Matrix Removal and Pre-Concentration Prior to ICP-MS Analysis -- SeaFAST: Automated Extraction of Metals from Seawater -- Box 3.7: SeaFAST in-Line Versus off-Line Configuration -- Box 3.8: Solid-Phase Extraction (SPE) and pH -- Box 3.9: UV Digestion -- Box 3.10: Internal Standard Addition for ICP-MS -- ICP-MS Analysis Following Extraction -- 3.5.1.2 Flow Injection Analysis -- 3.5.1.3 In Situ Metal Analysis Systems -- 3.5.1.4 Data Quality Control for Trace Metal Concentration Measurements -- 3.5.2 Trace Metal (Fe, Ni, Cu, Zn, Cd) Isotope Ratio Measurement Techniques -- 3.5.2.1 Background -- 3.5.2.2 Chemical Processing for Trace Metal Isotope Analysis -- Sea Salt Matrix Removal Stage -- Box 3.11: Chemical and Analytical Scheme for Multiple Trace Metal Isotope Ratio Analysis -- Purification Stage -- Box 3.12: Elution of Different Transition Metals from AGMP-1 Resin -- 3.5.2.3 Analytical Procedures for Trace Metal Isotope Analysis -- Isotope Ratio Basics, Nomenclature and `Zero´ Isotope Standards -- Box 3.13: Transition Metal Isotope Standards -- MC-ICP-MS Analytical Techniques and Mass Bias Correction Techniques -- Box 3.14: Peak Alignment for Measurement of Trace Metal Isotope Ratios by MC-ICP-MS -- Box 3.15: Double Spike Calibration -- Uncertainty (Precision and Accuracy) on Trace Metal Isotope Ratios -- 3.5.3 Trace Metal Speciation Measurement Techniques -- Box 3.16: Molecular Characterization of Metal-Binding Organic Ligands.3.5.3.1 Voltammetric Techniques -- Box 3.17: Metal Determination: ASV versus CSV -- 3.5.3.2 Voltammetric Analysis of Metal Complexation by Ligand Titration Using CLE-AdCSV -- Box 3.18: Forward and Reverse Titration -- Box 3.19: Limitations of Voltammetric Methods -- 3.5.3.3 Data Quality Control for Trace Metal Speciation Measurements -- 3.6 Considerations of Data Quality, Inter-Comparability and Accessibility -- References -- 4: Radionuclides as Ocean Tracers -- 4.1 Introduction -- 4.1.1 Basic Concepts of Radioactivity -- 4.1.1.1 Nuclear Instability and Types of Radioactive Decay -- 4.1.1.2 Equations of Radioactive Decay -- 4.1.1.3 Decay Chains -- 4.1.2 Why Do We Find Radionuclides in the Environment? -- 4.1.2.1 Primordial and Natural Decay Series Radionuclides -- 4.1.2.2 Cosmogenic Radionuclides -- 4.1.2.3 Anthropogenic Radionuclides -- 4.2 Radionuclides as Ocean Tracers -- 4.2.1 Which Radionuclides Can Trace a Given Process? -- 4.2.1.1 Input Source -- 4.2.1.2 Physicochemical Behavior -- 4.2.1.3 Half-Life -- 4.2.2 What Are the Most Common Ocean Processes Studied Using Radionuclides? -- 4.2.2.1 Ocean Circulation -- 4.2.2.2 Particle Scavenging -- 4.2.2.3 Land-Ocean Interaction -- 4.2.2.4 Sedimentation Processes -- 4.2.2.5 Atmosphere-Ocean Interaction -- 4.3 Case Studies for the Application of Radionuclides as Ocean Tracers -- 4.3.1 The 234Th/238U Pair as a Tracer of the Biological Pump -- 4.3.1.1 What Is the Biological Pump and Why Is It Important? -- 4.3.1.2 Why Is the 234Th/238U Pair an Ideal Tracer of Particle Export? -- 4.3.1.3 How to Quantify Particle Export Using the 234Th/238U Pair? -- Step 1: Quantification of 234Th Fluxes Due to Particle Scavenging -- Box 4.1 234Th Flux Calculations -- Step 2: Conversion from 234Th Fluxes to POC Fluxes -- Example: Changes of POC Export Fluxes Across the Northwest Atlantic -- 4.3.1.4 Closing Remarks.4.3.2 Ra Isotopes as Tracers of Submarine Groundwater Discharge -- 4.3.2.1 What Is Submarine Groundwater Discharge and Why Is It Important? -- 4.3.2.2 Why Are Ra Isotopes Ideal Tracers of SGD? -- 4.3.2.3 How to Quantify SGD Using Ra Isotopes? -- Step 1: Determination of Ra Fluxes Supplied by SGD: The Ra Mass Balance -- Step 2: Determination of the Fluxes of Water and Nutrients Supplied by SGD -- Example: SGD to the Mediterranean Sea -- 4.3.2.4 How to Quantify Transport Time Scales Using Ra Isotopes? -- 4.3.2.5 Closing Remarks -- 4.3.3 Anthropogenic Radionuclides as Tracers of Ocean Circulation -- 4.3.3.1 What Is Ocean Circulation and Why Is It Important? -- 4.3.3.2 Why Are Anthropogenic Radionuclides Ideal Tracers of Ocean Circulation? -- Sources of Anthropogenic Radionuclides to the Ocean -- Box 4.2 Example of Weapon Test 90Sr as Tracer of Water Circulation in the North Atlantic -- 4.3.3.3 How Can 129I Help Study the Circulation in the Arctic Ocean and the SPNA? -- Example 1: Pathways of Atlantic Waters in the Arctic Ocean -- Example 2: Changes of Surface Circulation in the Arctic Ocean -- Example 3 Circulation Time Scales to the Deep Labrador Sea in the Subpolar Region -- 4.3.3.4 Closing Remarks -- 4.4 Measurement of Radionuclides -- 4.4.1 Radiometric Techniques -- 4.4.1.1 Basic Concepts of Radiometric Techniques -- 4.4.1.2 General Properties of Radiation Detectors -- 4.4.1.3 Types of Radiation Detectors -- Gas Detectors -- Box 4.3 Quantifying 234Th in Seawater Using Geiger-Müller Detectors -- Semiconductor Detectors -- Box 4.4 Quantifying 228Ra and 226Ra in Seawater Using HPGe Semiconductor Detectors -- Scintillation Detectors -- Box 4.5 Quantifying 224Ra and 223Ra in Seawater Using a RaDeCC System -- 4.4.2 Mass Spectrometric Techniques -- Box 4.6 Quantifying 129I in Seawater Using Accelerator Mass Spectrometry -- References.5: Persistent Organic Contaminants.Analytical chemistry. Chemical oceanographyAnalytical chemistry. .Chemical oceanography.543Tovar-Sánchez Antonio Blasco JuliánMiAaPQMiAaPQMiAaPQBOOK9910624320603321Marine Analytical Chemistry2968050UNINA