00819cam0-22002891i-450-99000071286040332120160418123100.0000071286FED01000071286(Aleph)000071286FED0100007128620020821d1947----km-y0itay50------baengGBa-------001yyArchitectureMartin S. BriggsLondon ; New York ; TorontoOxford University1947VIII, 228 p.ill.17 cm<<The >>home university library of modern knowledge200Briggs,Martin Shaw271601ITUNINARICAUNIMARCBK990000712860403321ARCH A 43280FARBCFARBCArchitecture324334UNINA03565nam 2200889z- 450 9910619465803321202210253-0365-5200-6(CKB)5670000000391616(oapen)https://directory.doabooks.org/handle/20.500.12854/93210(oapen)doab93210(EXLCZ)99567000000039161620202210d2022 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierDeep Learning-Based Action RecognitionMDPI - Multidisciplinary Digital Publishing Institute20221 online resource (240 p.)3-0365-5199-9 The classification of human action or behavior patterns is very important for analyzing situations in the field and maintaining social safety. This book focuses on recent research findings on recognizing human action patterns. Technology for the recognition of human action pattern includes the processing technology of human behavior data for learning, technology of expressing feature values of images, technology of extracting spatiotemporal information of images, technology of recognizing human posture, and technology of gesture recognition. Research on these technologies has recently been conducted using general deep learning network modeling of artificial intelligence technology, and excellent research results have been included in this edition.History of engineering & technologybicsscTechnology: general issuesbicssc3D skeletal3D-CNNaction recognitionactivity recognitionartificial intelligenceclass regularizationclass-specific featuresCNNcontinuous hand gesture recognitionconvolutional receptive fielddata augmentationdeep learningdynamic gesture recognitionDynamic Hand Gesture Recognitionembedded systemfeature fusionfeedforward neural networksfusion strategiesgesture classificationgesture spottinggraph convolutionhand gesture recognitionhand shape featureshigh-order featurehuman action recognitionhuman activity recognitionhuman-computer interactionhuman-machine interfaceLong Short-Term Memorymulti-modal featuresmulti-modalities networkmulti-person pose estimationn/apartition pose representationpartitioned centerpose networkpose estimationreal-timespatio-temporal differentialspatio-temporal featurespatio-temporal image formationspatiotemporal activationsspatiotemporal featurestacked hourglass networktransfer learningHistory of engineering & technologyTechnology: general issuesLee Hyo Jongedt1320374Lee Hyo JongothBOOK9910619465803321Deep Learning-Based Action Recognition3034204UNINA