04978nam 22006975 450 991061638930332120251009110014.09789811961762(electronic bk.)978981196175510.1007/978-981-19-6176-2(MiAaPQ)EBC7107656(Au-PeEL)EBL7107656(CKB)24996011900041(PPN)265857651(DE-He213)978-981-19-6176-2(OCoLC)1349943615(EXLCZ)992499601190004120221006d2022 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMagnetic Resonators Feedback with Magnetic Field and Magnetic Cavity /by C. S. Nikhil Kumar1st ed. 2022.Singapore :Springer Nature Singapore :Imprint: Springer,2022.1 online resource (105 pages)SpringerBriefs in Applied Sciences and Technology,2191-5318Print version: Nikhil Kumar, C. S. Magnetic Resonators Singapore : Springer,c2022 9789811961755 Intro -- Contents -- Abbreviations -- Notations -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 Magnonic Crystals -- 1.1.1 Magnon-Based Computing -- 1.1.2 Magnetoelectronics and Magnon Spintronics -- 1.1.3 STNO Configurations -- 1.1.4 STNO Device Principle -- 1.1.5 Mutual Synchronization of STNOs Through Electrical Coupling -- 1.2 Landau-Lifshitz-Gilbert-Slonczewski Equation -- 1.2.1 Plane Wave Method -- 1.2.2 Micromagnetics -- 1.3 Summary -- References -- 2 Spin-Wave Excitation Patterns Generated by Spin-Torque Nano-Oscillators -- 2.1 Approximate Model -- 2.2 Micromagnetic Simulations -- 2.2.1 Forward Volume Spin Waves -- 2.2.2 Backward Volume and Surface Spin Waves -- 2.2.3 Multiple NC STNOs -- 2.3 Summary -- References -- 3 Coherent Spin-Wave Oscillations Through External Feedback -- 3.1 Spintronic Oscillator with Magnetic Field Feedback -- 3.1.1 Quasi-Static Simulations -- 3.1.2 Magnetization Dynamics -- 3.1.3 Simulation Results -- 3.2 Electrical Analogy -- 3.3 Summary -- References -- 4 Magnonic Spectra in 2D Antidot Magnonic Crystals with Line Defect -- 4.1 Plane Wave Method -- 4.1.1 Convergence -- 4.2 Eigenmodes -- 4.3 Micromagnetic Simulations -- 4.3.1 Magnonic Spectra -- 4.3.2 Antidot Magnonic Crystal Waveguide -- 4.3.3 Dispersion Analysis of an MC3 Cavity -- 4.4 Summary -- References -- 5 Sustaining Spin-Wave Oscillations Through Internal Feedback -- 5.1 Nanocontact STNO in MC Cavity -- 5.1.1 Design Methodology -- 5.1.2 Spin-Wave Dynamics with MCC-End Fire Antenna -- 5.1.3 Current-Induced Oersted Field in a Micromagnetic Simulation -- 5.1.4 Quality Factor Calculation -- 5.2 Phase Locking of Nanocontact STNOs-Broad Side Antenna -- 5.2.1 Symmetric Array of NC STNOs -- 5.2.2 Asymmetric Array of NC STNOs -- 5.2.3 Detuning of SWs in NC STNOs in MC Cavity -- 5.3 Summary -- References -- 6 Summary and Future Work.6.1 Future Work -- References -- Publications.The phase-locking of multiple spin-torque nano oscillators(STNOs) is considered the primary vehicle to achieve sufficient signal quality for applications. This book highlights the resonator's design and its need for feedback for phase locking of STNOs. STNOs can act as sources of tunable microwaves after being phase-locked together. External feedback from a coplanar waveguide placed above an STNO helps ensures coherent single domain oscillations. STNOs placed within magnonic crystal cavities also demonstrate coherent oscillations. Arrays of such cavities provide a route to scale power levels from such nano-oscillators. The book presents numerical and micromagnetics to validate the design. .SpringerBriefs in Applied Sciences and Technology,2191-5318PhysicsTelecommunicationMicroresonators (Optoelectronics)Magnetic materialsMathematical physicsApplied and Technical PhysicsMicrowaves, RF Engineering and Optical CommunicationsMicroresonatorsMagnetic MaterialsTheoretical, Mathematical and Computational PhysicsPhysics.Telecommunication.Microresonators (Optoelectronics)Magnetic materials.Mathematical physics.Applied and Technical Physics.Microwaves, RF Engineering and Optical Communications.Microresonators.Magnetic Materials.Theoretical, Mathematical and Computational Physics.153.6Nikhil Kumar C. S.1262379MiAaPQMiAaPQMiAaPQ9910616389303321Magnetic Resonators2950630UNINA