10821nam 22005053 450 991059559320332120220915080327.03-527-83855-43-527-83854-63-527-83853-8(MiAaPQ)EBC7081836(Au-PeEL)EBL7081836(OCoLC)1344161245(CKB)24815165900041(EXLCZ)992481516590004120220915d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPolymer Nanocomposites for Energy ApplicationsNewark :John Wiley & Sons, Incorporated,2022.©2023.1 online resource (271 pages)Print version: Nandhakumar, Manjubaashini Polymer Nanocomposites for Energy Applications Newark : John Wiley & Sons, Incorporated,c2022 9783527350483 Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Origin of Polymer Materials -- 1.1 History of Polymers -- 1.1.1 Examples of Polymers -- 1.2 Types of Polymers -- 1.2.1 Based on Applications -- 1.2.2 Classification Based on Temperature Effect -- 1.2.2.1 Thermosetting Polymers -- 1.2.2.2 Thermoplastic Polymers -- 1.3 Properties of Polymers -- 1.3.1 Molecular Weight -- 1.3.2 Structural Aspects -- 1.3.3 Copolymers in Sequence -- 1.3.4 Crystallinity of Polymers -- 1.3.4.1 Solid‐State Crystallinity -- 1.3.4.2 Factors Favoring Crystallinity -- 1.3.5 Morphology of the Polymeric Crystals -- 1.3.5.1 Solid‐State Thermal Transitions -- 1.3.6 Mechanical Behavior -- 1.3.7 Polymer Rheology and Processing -- 1.3.7.1 Polymer Processing Techniques -- 1.3.7.2 Rheology of Nanocomposites -- 1.3.7.3 Theory and Modeling of Nanocomposites Rheology -- 1.3.8 Polymer Viscoelasticity -- 1.4 Physicochemical Properties of Polymers -- 1.4.1 Polymers are Very Resistant to Chemicals -- 1.4.2 Polymers are Both Thermal and Electrical Insulators -- 1.4.3 Polymers are Very Light in Weight with Significant Degrees of Strength -- 1.4.4 Polymers are Processed in Various Ways -- 1.4.5 Polymers are Materials With a Seemingly Limitless Range of Characteristics and Colors -- 1.4.6 Polymers are Usually Made of Petroleum, but not Always -- 1.4.7 Polymers are Used to Make Items That Have no Alternatives to Other Materials -- References -- Chapter 2 Synthesis of Polymers -- 2.1 Features of the Polymerization Reactions -- 2.2 Chain Polymerization -- 2.3 Ring‐Opening Polymerization -- 2.4 Polycondensation -- 2.5 Polyaddition -- 2.6 Step‐Growth Polymerization -- 2.7 Dendrimers -- 2.8 Anionic Polymerization -- 2.9 Cationic Polymerization -- 2.10 Controlled Radical Polymerization -- 2.11 Atom Transfer Radical Polymerization (ATRP).2.12 Reversible Addition Fragmentation Chain Transfer (RAFT) -- 2.13 Supramolecular Polymerization -- 2.14 Bulk Polymerization -- 2.15 Solution Polymerization -- 2.16 Suspension Polymerization -- 2.17 Methods for the Synthesis of Functional Polymers -- 2.17.1 Direct Copolymerization -- 2.17.2 End‐Functionalization -- 2.17.3 Functionalization‐Grafting -- 2.17.4 Click Chemistry in Polymerization -- 2.18 Polymer Nanoparticles -- 2.19 Synthesis Techniques of Polymer Nanoparticle -- 2.19.1 Solvent Evaporation -- 2.19.2 Salting‐Out -- 2.19.3 Nanoprecipitation -- 2.19.4 Dialysis -- 2.19.5 Supercritical Fluid Technology -- 2.19.6 Rapid Expansion of Supercritical Solution (RESS) -- 2.19.7 Rapid Expansion of Supercritical Solution into a Liquid Solvent (RESOLV) -- 2.19.8 Polymerization of Monomers -- 2.19.9 Emulsion Polymerization -- 2.19.10 Conventional Emulsion Polymerization -- 2.19.11 Surfactant‐Free Emulsion Polymerization -- 2.19.12 Mini‐Emulsion Polymerization -- 2.19.13 Micro‐Emulsion Polymerization -- 2.19.14 Interfacial Polymerization -- References -- Chapter 3 Characterization of Polymer Materials -- 3.1 Introduction -- 3.2 UV-Visible Spectroscopy -- 3.3 Elemental Analysis -- 3.4 Infrared Spectroscopy -- 3.5 Qualitative Analysis of Polymers -- 3.6 Spectral Analysis for Polyethylene and Polystyrene -- 3.7 Determination of Molecular Weight and Thermodynamic Properties -- 3.8 Differential Scanning Colorimetry (DSC) Analysis -- 3.9 Thermogravimetric Assays (TGAs) -- 3.10 Gel Permeation Chromatography (GPC) -- 3.11 High‐Performance Liquid Chromatography (HPLC) -- 3.12 Size Exclusion Chromatography (SEC) -- 3.13 Raman Spectroscopy -- 3.13.1 Polyethylene Density -- 3.13.2 Polybutadiene Microstructure -- 3.14 Mechanical Testing and Rheometry -- 3.15 Nuclear Magnetic Resonance Spectroscopy -- 3.16 X‐ray Diffraction.3.17 Molar Mass and Molar Mass Distribution -- 3.18 Osmometry -- 3.19 Mass Spectrometry -- 3.20 Scanning Electron Microscopy (SEM) -- 3.21 Transmission Electron Microscopy (TEM) -- 3.22 Atomic Force Microscopy (AFM) -- 3.23 Optical Microscopy (OM) -- References -- Chapter 4 Diverse Applications of Polymer Materials -- 4.1 Board Area of Polymer Applications -- 4.2 Polymers in Biotechnology -- 4.3 Polymer Dielectrics for Electronics -- 4.3.1 Luminescent Layers in Light‐Emitting Diodes -- 4.4 Smart and Self‐healing Coatings -- 4.5 Polymeric Biocides and Herbicides -- 4.6 Polymers for Soil Remediation -- 4.7 Benefits of Polymers in Fabric and Home Care Formulations -- 4.8 Polymeric Materials for Photonics -- 4.9 Polymers for Electrophotography -- 4.10 Polymers in Energy Applications -- 4.11 Polymers in Construction Applications -- 4.12 Polymers in Automobile Applications -- References -- Chapter 5 Introduction to Nanomaterials -- 5.1 Nanotechnology -- 5.2 Nanomaterials -- 5.3 Types of Nanomaterials -- 5.3.1 Quantum Dots -- 5.3.2 Organic Materials -- 5.3.3 Metal Oxides -- 5.3.4 Carbon Nanotubes -- 5.3.5 Polymeric Nanomaterials -- 5.4 Synthesis of Nanoparticles -- 5.4.1 Coprecipitation -- 5.4.2 Hydrothermal Technique -- 5.4.3 Inert Gas Condensation -- 5.4.4 Sonochemical -- 5.4.5 Microemulsion -- 5.4.6 Microwave‐Assisted -- 5.4.7 Laser Ablation -- 5.4.8 Sol-Gel -- 5.4.9 Spark Discharge -- 5.4.10 Template Synthesis -- 5.4.11 Biological Synthesis -- 5.5 Applications of Nanotechnology -- 5.5.1 Nanotechnology in Energy Sector -- 5.5.2 Nanotechnology in Textile -- 5.5.3 Nanotechnology in Agriculture -- 5.5.4 Nanotechnology in Electronics -- 5.5.5 Nanotechnology in Cosmetics -- 5.5.6 Nanotechnology in Medical Field -- References -- Chapter 6 Introduction to Polymer Nanocomposites -- 6.1 Classes of Nanocomposites -- 6.2 Different Types of Nanocomposites.6.2.1 Polymer‐Based and Non‐Polymer‐Based Nanocomposites -- 6.2.1.1 Polymer/Ceramic Nanocomposite -- 6.2.1.2 Inorganic/Organic Polymer Nanocomposites -- 6.2.1.3 Inorganic/Organic Hybrid Nanocomposite -- 6.2.1.4 Polymer/Layered Silicate (PLS) Nanocomposites -- 6.2.1.5 Polymer/Polymer Nanocomposites -- 6.2.1.6 Biocomposites -- 6.2.1.7 Ceramic Matrix Nanocomposites -- 6.2.1.8 Metal Matrix Nanocomposites -- 6.2.1.9 Polymer Matrix Nanocomposites -- 6.3 Synthesis Methods of Nanocomposite -- 6.3.1 Solution Casting Method -- 6.3.2 Melt Blending Method -- 6.3.3 In situ Polymerization Method -- 6.3.4 Exfoliation Adsorption Method -- 6.3.5 Template Synthesis Method -- 6.4 Characterization Techniques for Nanocomposite -- 6.5 Applications of Nanocomposite Materials -- 6.5.1 Automotive Industry -- 6.5.2 Packaging Industry -- 6.5.3 Catalysis -- 6.5.4 Solid Polymer Electrolyte -- 6.5.5 Water Treatment Applications -- 6.5.6 Aircrafts -- 6.5.7 Electronics -- 6.5.8 Environmental Protection -- References -- Chapter 7 Polymer Nanocomposites in Energy Storage System -- 7.1 Introduction -- 7.2 Batteries -- 7.3 Thermal -- 7.4 Mechanical Storage -- 7.5 Hydrogen -- 7.6 Pumped Hydropower -- 7.7 Flywheels -- 7.8 Role of Polymer Nanocomposites in Energy Storage Applications -- 7.9 Properties of Polymer Nanocomposites -- 7.9.1 Physical Properties -- 7.9.2 Rheological Properties -- 7.9.3 Mechanical Properties -- 7.9.4 Thermal Properties -- 7.9.5 Barrier and Chemical Resistance -- 7.9.6 Flame Retardancy -- 7.9.7 Optical Properties -- 7.9.8 Electrical Properties -- 7.9.9 Dielectric Properties -- 7.9.10 Biological Properties -- References -- Chapter 8 Polymer Nanocomposites for Renewable Energy Storage System -- 8.1 Renewable Energy -- 8.2 Renewable Energy Storage -- 8.3 Polymers for Energy Storage -- 8.4 Carbon‐Based Storage Materials.8.5 Energy Storage Capability of Polymer Nanocomposites -- References -- Chapter 9 High‐Performance Inorganic Polymer Nanocomposites‐Based Solar Cells -- 9.1 Introduction -- 9.2 Organic-Organic Composites -- 9.3 Inorganic Nanocomposites -- 9.4 Nanocomposites in Perovskite Solar Cells -- 9.5 Polymeric Nanocomposites in Dye‐Sensitized Solar Cells (DSSCs) -- References -- Chapter 10 Polymer Nanocomposites for Magnetic Energy and Thermal Energy Storage -- 10.1 Background of Polymer Nanocomposites for Energy Storage -- 10.2 Energy Density -- 10.3 Superconducting Magnetic Energy Storage (SMES) -- 10.4 Thermal Energy Storage (TES) -- 10.4.1 Sensible Heat Storage (SH‐TES) -- 10.4.2 Latent Heat Storage (LH‐TES) -- 10.4.3 Thermochemical Heat Storage (TH‐TES) -- 10.5 Thermoplastic Composites for TES -- References -- Chapter 11 Polymer Nanocomposites for Triboelectricity and Hydrogen Storage -- 11.1 Polymer Nanocomposites for Triboelectricity -- 11.1.1 Energy Harvesting Application -- 11.2 Polymer Nanocomposites for Hydrogen Storage -- 11.3 Hydrogen‐Based Energy Storage System -- 11.3.1 Liquid Hydrogen Storage -- 11.3.2 Compressed and Stored in a Pressure Tank -- 11.3.3 Physical Adsorption in Carbon -- 11.3.4 Complex Compounds‐Microsphere Hydrogen Storage -- 11.3.5 Metal Hydrides -- References -- Chapter 12 Polymer Nanocomposites for Supercapacitors and Battery Application -- 12.1 Battery‐Based Energy Storage System -- 12.2 Types of Battery -- 12.2.1 Lead‐Acid Battery -- 12.2.2 Nickel‐Based Battery -- 12.2.3 Sodium-Sulfur Battery (NaS) -- 12.2.4 Lithium‐Based Battery -- 12.2.5 Flow Battery Energy Storage (FBES) -- 12.3 Conducting Polymer Nanocomposites -- 12.4 Fuel Cells -- 12.5 Capacitor and Supercapacitor Energy Storage -- References -- Chapter 13 Electrochemical Energy Storage System -- 13.1 Introduction -- 13.2 Need for Energy Storage System.13.2.1 Energy Reality and Increasing Renewable Penetration.Electronic books.620.192Nandhakumar Manjubaashini1259172Thangadurai T. Daniel1064261Thomas Sabu851308Nzihou Ange1259173MiAaPQMiAaPQMiAaPQBOOK9910595593203321Polymer Nanocomposites for Energy Applications2917912UNINA