05582nam 2200649Ia 450 991043809530332120200520144314.09781430249788143024978110.1007/978-1-4302-4978-8(CKB)3460000000120366(EBL)1204529(SSID)ssj0000878485(PQKBManifestationID)11476013(PQKBTitleCode)TC0000878485(PQKBWorkID)10850655(PQKB)11769320(DE-He213)978-1-4302-4978-8(MiAaPQ)EBC1204529(CaSebORM)9781430249771(PPN)169134873(OCoLC)843955372(OCoLC)ocn843955372 (EXLCZ)99346000000012036620130327d2013 uy 0engur|n|---|||||txtccrASP.NET MVC 4 and the Web API building a REST service from start to finish /Jamie Kurtz1st ed. 2013.Berkeley, Calif. Apress ;New York Distributed to the book trade worldwide by Springerc20131 online resource (152 p.)The expert's voice in ASP.NET ASP.NET MVC 4 and the Web APIIncludes index.9781430249771 1430249773 Title Page; Copyright Page; Contents at a Glance; Table of Contents; Foreword; About the Author; About the Technical Reviewer; Acknowledgments; CHAPTER 1 ASP.NET MVC as a Service Framework; In the Land of JavaScript and Mobile Devices; Advantages of Using the MVC Framework; Configuration; REST by Default; Abstraction with Routes; Controller Activation Is, Well, Very Nice; Interoperability of JSON, XML, and REST; A Brief Introduction to the Web API; Summary; CHAPTER 2 What is RESTful?; From RPC to REST; XML-RPC and SOAP; URIs and Resources; HTTP Verbs; HATEOAS; HTTP Status Codes; SummaryCHAPTER 3 Designing the Sample REST APITask Management Resource Types; Hypermedia Links; Modeling the URIs and HTTP Verbs; The Task-Management Data Model; Choosing Architecture Components; Data Access; IoC Container; Logger; Authentication and Authorization; Mocking Framework; Build and Deployment Scripting; Summary; CHAPTER 4 Building the Environment and Creating the Source Tree; Machine Configuration; Windows 7 SP1 64 bit; SQL Server 2012; Visual Studio 2012; NuGet Package Manager 2.1; Creating the Folder Structure; Creating the Solution; NuGet Config File; Adding the ProjectsBasic ComponentsDateTimeAdapter; Domain Model; Service Model Types; Logging; The Database; Summary; CHAPTER 5 Controllers, Dependencies, and Managing the Database Unit of Work; Controller Activation; Adding an HttpRequestMessage Argument; Adding a Model Object Argument; Dependencies; Constructor Injection of Dependencies; Configuring Ninject Dependency Injection; Container Configuration; Container Bindings; IDependencyResolver for Ninject; NHibernate Configuration and Mappings; Database Configuration; Model Mapping; The Mapping Classes; Project and File Organization; Model RelationshipsManaging the Unit of WorkDatabase Transaction Control; Summary; CHAPTER 6 Securing the Service; The Main Idea; Authentication; Authorization; The Authentication and Authorization Process; Setting It Up; Augmenting Membership Data; The Message Handler; IUserSession; Summary; CHAPTER 7 Putting It All Together; A Quick Recap; The Reference Data Controllers; The PrioritiesController; The CategoriesController; Exploring the Controllers; Using Fiddler; Content Negotiation in the Web API; Adding New Resources; OData Support in the Web API; The Task Controllers; Separation of SubcontrollersTask Priority and Status ControllersThe Task Categories and Users Controllers; The Task Controller; Sample Client Code; Automatic Error Logging; Summary; IndexThis one hundred page book focuses exclusively on how you can best use the ASP.NET MVC 4 Framework to build world-class REST services using the Web API. It sets aside much of what the ASP.NET MVC Framework can do, and focuses exclusively on how the Web API can help you build web services. You will not find any help on CSS, HTML, JavaScript, or jQuery. Nor will you find any help on the Razor view engine, HTML Helpers, or model binding. If you need this information then Pro ASP.NET MVC 4 is your perfect book. ASP.NET MVC 4 and the Web API: Building a REST Service from Start to Finish helps you build cutting-edge REST services using ASP.NET MVC 4 and the Web API in more depth and detail than any other resource. ASP.NET MVC has always been a good platform on which to implement REST, but with the advent of the Web API it has now become even better. This book will show you why it's great and how to get the most from it. Author Jamie Kurtz will take you from zero to full-blown REST service hero in no time at all. And you'll even learn how to incorporate some popular open source tools along the way: little or no experience with ASP.NET or the MVC Framework is required.Microsoft .NETApplication program interfaces (Computer software)Microsoft .NET.Application program interfaces (Computer software)006.76Kurtz Jamie860175MiAaPQMiAaPQMiAaPQBOOK9910438095303321ASP.NET MVC 4 and the Web API1947594UNINA12694nam 22007335 450 991059104030332120251113184457.0981-19-4672-810.1007/978-981-19-4672-1(MiAaPQ)EBC7080267(Au-PeEL)EBL7080267(CKB)24778999000041(PPN)264955846(OCoLC)1344433701(DE-He213)978-981-19-4672-1(EXLCZ)992477899900004120220903d2022 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierDirichlet Forms and Related Topics In Honor of Masatoshi Fukushima’s Beiju, IWDFRT 2022, Osaka, Japan, August 22–26 /edited by Zhen-Qing Chen, Masayoshi Takeda, Toshihiro Uemura1st ed. 2022.Singapore :Springer Nature Singapore :Imprint: Springer,2022.1 online resource (572 pages)Springer Proceedings in Mathematics & Statistics,2194-1017 ;394Print version: Chen, Zhen-Qing Dirichlet Forms and Related Topics Singapore : Springer,c2022 9789811946714 Includes bibliographical references and index.Intro -- Preface -- List of Masatoshi Fukushima's Publications -- Contents -- Markov Uniqueness and Fokker-Planck-Kolmogorov Equations -- 1 Introduction and Framework -- 2 The Main Idea and a Parabolic Condition for Uniqueness -- 3 Some Uniqueness Results for FPKEs -- 3.1 Fokker-Planck-Kolmogorov Equations -- 3.2 Nondegenerate VMO Diffusion Coefficients -- 3.3 Nondegenerate Locally Lipschitz Diffusion Coefficients -- 3.4 Nondegenerate Diffusion Coefficients and the Lyapunov Function Condition -- 3.5 Degenerate Diffusion Coefficients -- 4 Applications to the Markov Uniqueness Problem -- 4.1 The Framework -- 4.2 Nondegenerate VMO Diffusion Coefficients -- 4.3 Nondegenerate Locally Lipschitz Diffusion Coefficients -- 4.4 Nondegenerate Diffusion Coefficients and Lyapunov Function Conditions -- 4.5 Degenerate Diffusion Coefficients -- References -- A Chip-Firing and a Riemann-Roch Theorem on an Ultrametric Space -- 1 Introduction -- 2 Laplacian and Riemann-Roch Theorem on Ultrametric Space with Finite Vertices -- 3 Unification of Ultrametric Space with Finite Verteces -- 4 Riemann-Roch Theorem on Ultrametric Space with Countably Many Vertices -- References -- Hermitizable, Isospectral Matrices or Differential Operators -- 1 Hermitizable, Isospectral Matrices -- 2 Hermitizable, Isospectral Differential Operators -- References -- On Strongly Continuous Markovian Semigroups -- References -- Two-Sided Heat Kernel Estimates for Symmetric Diffusion Processes with Jumps: Recent Results -- 1 Introduction -- 2 Stability of Heat Kernel Estimates for Symmetric Diffusions with Jumps -- 2.1 Two-Sided Heat Kernel Estimates -- 2.2 Example -- 3 Symmetric Reflected Diffusions with Jumps in Inner Uniform Domains -- 3.1 Reflected Diffusions on Inner Uniform Domains -- 3.2 Reflected Diffusions with Jumps.3.3 Heat Kernel Estimates for the beta Subscript asterisk Baseline less than or equals beta Superscript asterisk Baseline less than or equals normal infinityβ*leβ* leinfty in StartSet 0 Subscript plus Baseline EndSet union left parenthesis 0 comma normal infinity right bracket{0+}(0, infty] Case -- 3.4 Discussion on Off-Diagonal Heat Kernel Upper Bound -- 3.5 Example -- References -- On Non-negative Solutions to Space-Time Partial Differential Equations of Higher Order -- 1 Introduction -- 2 An Abstract Problem -- 3 Some Translation Invariant Pseudo-differential Operators -- 4 Some Discussions on the Case upper N equals 2N=2 -- 5 Higher Order Partial Differential Equations Admitting Non-negative Solutions -- References -- Monotonicity Properties of Regenerative Sets and Lorden's Inequality -- 1 Introduction -- 2 Lorden's Inequality -- 3 Monotone Potential Density -- 4 Concluding Remarks -- References -- Doob Decomposition, Dirichlet Processes, and Entropies on Wiener Space -- 1 Introduction -- 2 Doob Decomposition in Continuous Time -- 3 Entropies and Couplings on Wiener Space -- References -- Analysis on Fractal Spaces and Heat Kernels -- 1 Introduction -- 2 Classical Heat Kernel -- 3 Examples of Fractals -- 4 Dirichlet Forms -- 5 Walk Dimension -- 6 Besov Spaces and Characterization of betaβ -- 7 Dichotomy of Self-similar Heat Kernels -- 8 Estimating Heat Kernels: Strongly Local Case -- 9 Estimating Heat Kernels: Jump Case -- 10 Ultra-metric Spaces -- References -- Silverstein Extension and Fukushima Extension -- 1 Introduction -- 2 Silverstein Extensions -- 3 Fukushima Extensions -- 4 Examples of Fukushima Extensions -- 5 Fukushima Subspaces -- 6 Example: Revisit -- References -- Singularity of Energy Measures on a Class of Inhomogeneous Sierpinski Gaskets -- 1 Introduction -- 2 Framework and Statement of Theorems -- 3 Preliminary Lemmas.4 Proof of the Main Results -- 5 Concluding Remarks -- References -- On upper L Superscript pLp Liouville Theorems for Dirichlet Forms -- 1 Introduction -- 2 Fukushima's Ergodic Theorem -- 3 Regular Dirichlet Forms and Harmonic Functions -- 3.1 Basic Notions and Intrinsic Metrics -- 3.2 Harmonic Functions -- 4 A Caccioppoli Inequality -- 5 Proof of Yau's and Karp's Theorem and Recurrence -- 5.1 Proof of Yau's and Karp's Theorem -- 5.2 Proof of the Growth Test for Recurrence -- References -- On Singularity of Energy Measures for Symmetric Diffusions with Full Off-Diagonal Heat Kernel Estimates II: Some Borderline Examples -- 1 Introduction -- 2 The Examples: Thin Scale Irregular Sierpiński Gaskets -- 3 Space-Time Scale Function upper Psi Subscript bold italic ll and fHKEfHKE left parenthesis upper Psi Subscript bold italic l Baseline right parenthesisfHKE(l) -- 4 Singularity of the Energy Measures -- 5 Realizing Arbitrarily Slow Decay Rates of upper Psi left parenthesis r right parenthesis divided by r squared(r)/r2 -- References -- Scattering Lengths for Additive Functionals and Their Semi-classical Asymptotics -- 1 Introduction -- 2 Scattering Length for Additive Functionals -- 3 Kac's Scattering Length Formula -- 4 Semi-classical Asymptotics for Scattering Length -- References -- Equivalence of the Strong Feller Properties of Analytic Semigroups and Associated Resolvents -- 1 Introduction -- 2 Preliminaries -- 3 Equivalence of the Strong Feller Properties -- 4 Application to Markov Processes Associated with Lower Bounded Semi-Dirichlet Forms -- References -- Interactions Between Trees and Loops, and Their Representation in Fock Space -- 1 Framework and Definitions -- 2 Interaction Between Tree and Loops -- 3 Fock Spaces -- 4 Local Interaction in Supersymmetric Fock Space -- References -- Remarks on Quasi-regular Dirichlet Subspaces.1 Introduction -- 2 Quasi-regular Dirichlet Subspaces -- 3 Quasi-regular Dirichlet Subspaces of Concrete Dirichlet Forms -- 3.1 One-Dimensional Brownian Motion -- 3.2 Multi-dimensional Brownian Motion -- 4 Further Remarks -- References -- Power-Law Dynamic Arising from Machine Learning -- 1 Introduction -- 2 Background and Preliminaries on Power-Law Dynamic -- 2.1 Background in Machine Learning -- 2.2 Preliminaries on Power-Law Dynamic -- 3 Property of the Stationary Distribution -- 4 Existence and Uniqueness of the Stationary Distribution -- 5 First Exit Time: Asymptotic Order -- 6 First Exit Time: From Continuous to Discrete -- References -- Hölder Estimates for Resolvents of Time-Changed Brownian Motions -- 1 Introduction -- 2 Main Results -- 3 Preliminary Lemmas -- 4 Proof of Theorem 1 -- References -- On the Continuity of Half-Plane Capacity with Respect to Carathéodory Convergence -- 1 Introduction -- 2 Study on the Upper Half-Plane -- 2.1 Basic Definitions and Proof of Theorem1 -- 2.2 Strict Monotonicity -- 3 Study on Parallel Slit Half-Planes -- 3.1 BMD Half-Plane Capacity -- 3.2 Markov Chains Induced by BMD -- 3.3 Uniform Regularity of Slit Domains -- 4 Relation to Geometric Function Theory -- 4.1 Half-Plane Capacity and Angular Residue at Infinity -- 4.2 Carathéodory Convergence and Locally Uniform Convergence -- References -- Dyson's Model in Infinite Dimensions Is Irreducible -- 1 Introduction -- 2 The MathID170 m-Labeled Process and the Lyons-Zheng Decomposition -- 3 Proof of Theorems 2 and 3 -- 4 Proof of Theorem 1 -- References -- (Weak) Hardy and Poincaré Inequalities and Criticality Theory -- 1 Introduction -- 2 Preliminaries -- 2.1 Closed Quadratic Forms on upper L squared left parenthesis upper X comma mu right parenthesisL2(X,µ) and upper L Superscript 0 Baseline left parenthesis upper X comma mu right parenthesisL0(X,µ).2.2 Extensions of Positivity Preserving Operators -- 3 The Beurling-Deny Criteria, Excessive Functions and Extended Forms -- 3.1 Basics and Excessive Functions -- 3.2 The Extensions q Subscript eqe and q Superscript plusq+ -- 3.3 Invariant Sets and Irreducibilty -- 4 (Very) Weak and Abstract Poincaré and Hardy inequalities -- 5 From Weak Hardy Inequalities to Hardy Inequalities-Subcriticality -- 6 Weak Poincaré Inequalities and Completeness of Extended form Domains -- References -- Maximal Displacement of Branching Symmetric Stable Processes -- 1 Introduction -- 2 Symmetric Stable Processes -- 2.1 Resolvent Asymptotics -- 2.2 Spectral Properties of Schrödinger Type Operators with the Fractional Laplacian -- 2.3 Asymptotic Behaviors of Feynman-Kac Functionals -- 3 Maximal Displacement of Branching Symmetric Stable Processes -- 3.1 Branching Symmetric Stable Processes -- 3.2 Weak Convergence and Tail Asymptotics -- 3.3 Examples -- 4 Proof of Theorem 17 -- References -- Random Riemannian Geometry in 4 Dimensions -- 1 Random Riemannian Geometries and Conformal Invariance -- 2 Paneitz Energy on 4-Dimensional Manifolds -- 3 Co-biharmonic Gaussian Field and Quantum Liouville Measure -- 3.1 Conformally Invariant Gaussian Field -- 3.2 Quantum Liouville Measure -- 4 Approximation by Random Fields and Liouville Measures on the Discrete 4-Torus -- 4.1 The Isotropic Haar System -- 4.2 The Semi-discrete Gaussian Field -- 4.3 The Semi-discrete Liouville Measure -- 4.4 Discrete Random Objects -- References -- Infinite Particle Systems with Hard-Core and Long-Range Interaction -- 1 Introduction -- 2 Preliminaries -- 2.1 Systems of Unlabeled Hard Balls -- 2.2 Systems of Labeled Balls -- 2.3 Skorohod Equation -- 3 Results -- 3.1 Existence of a Weak Solution -- 3.2 Statement of the Results -- 4 Proof of the Main Theorem -- 4.1 Finite Cluster Property.4.2 On the Lipschitz Continuity of b Subscript bold italic upper X Superscript double struck upper IbXmathbbI.This conference proceeding contains 27 peer-reviewed invited papers from leading experts as well as young researchers all over the world in the related fields that Professor Fukushima has made important contributions to. These 27 papers cover a wide range of topics in probability theory, ranging from Dirichlet form theory, Markov processes, heat kernel estimates, entropy on Wiener spaces, analysis on fractal spaces, random spanning tree and Poissonian loop ensemble, random Riemannian geometry, SLE, space-time partial differential equations of higher order, infinite particle systems, Dyson model, functional inequalities, branching process, to machine learning and Hermitizable problems for complex matrices. Researchers and graduate students interested in these areas will find this book appealing. Professor Masatoshi Fukushima is well known for his fundamental contributions to the theory of Dirichlet forms andsymmetric Markov processes.Springer Proceedings in Mathematics & Statistics,2194-1017 ;394ProbabilitiesMarkov processesStochastic analysisPotential theory (Mathematics)Probability TheoryMarkov ProcessStochastic AnalysisPotential TheoryProbabilities.Markov processes.Stochastic analysis.Potential theory (Mathematics)Probability Theory.Markov Process.Stochastic Analysis.Potential Theory.519.2Chen Zhen-QingTakeda MasayoshiUemura ToshihiroMiAaPQMiAaPQMiAaPQBOOK9910591040303321Dirichlet forms and related topics3005081UNINA