07800nam 22004573 450 991059009990332120220703090313.01-119-77441-11-119-77438-11-119-77445-4(MiAaPQ)EBC7026955(Au-PeEL)EBL7026955(CKB)24100642600041(EXLCZ)992410064260004120220703d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierWide Bandgap Nanowires Synthesis, Properties, and ApplicationsNewark :John Wiley & Sons, Incorporated,2022.©2022.1 online resource (266 pages)Print version: Pham, Tuân Anh Wide Bandgap Nanowires Newark : John Wiley & Sons, Incorporated,c2022 9781119774372 Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Bottom-Up Growth Methods -- 1.1 Introduction -- 1.2 Bottom-Up Growth Mechanisms -- 1.2.1 Vapor-Liquid-Solid Growth Mechanism -- 1.2.2 Vapor-Solid-Solid Growth Mechanism -- 1.2.3 Vapor-Solid Growth Mechanism -- 1.2.4 Solution-Liquid-Solid Growth Mechanism -- 1.3 Bottom-Up Growth Techniques -- 1.3.1 Chemical Vapor Deposition -- 1.3.2 Metal-Organic Chemical Vapor Deposition -- 1.3.3 Plasma-Enhanced Chemical Vapor Deposition -- 1.3.4 Hydride Vapor Phase Epitaxy -- 1.3.5 Molecular Beam Epitaxy -- 1.3.6 Laser Ablation -- 1.3.7 Thermal Evaporation -- 1.3.8 Carbothermal Reduction -- References -- Chapter 2 Top-Down Fabrication Processes -- 2.1 Introduction -- 2.2 Top-Down Fabrication Techniques -- 2.2.1 Focused Ion Beam -- 2.2.2 Electron Beam Lithography -- 2.2.3 Reactive Ion Etching -- 2.3 Combined Lithography Techniques -- References -- Chapter 3 Hybrid Fabrication Techniques and Nanowire Heterostructures -- 3.1 Introduction -- 3.2 Bottom-Up Meets Top-Down Approaches -- 3.3 Integration of Nanowires onto Unconventional Substrates -- 3.3.1 Transferring Nanowires onto Flexible Substrates -- 3.3.2 Growing Nanowires on Graphene and Layered Material Substrates -- 3.4 Synthesis of Nanowire Heterostructures -- 3.4.1 Synthesis of One-Dimensional Heterostructures -- 3.4.2 Synthesis of Mixed Dimensional Heterostructures -- References -- Chapter 4 Electrical Properties of Wide Bandgap Nanowires -- 4.1 Electrical Properties -- 4.2 Measurement of Electrical Resistivity -- 4.3 Fundamental Electrical Properties of Nanowires -- 4.3.1 Effect of Doping on Electrical Properties -- 4.3.2 Mobility -- 4.3.3 Activation/Ionization Energy -- 4.3.4 Dependence of Activation/Ionization Energy on NW Dimensions -- 4.4 Electrical Properties of Wide Bandgap Nanowire Based Devices.4.4.1 Single NW Electrical Sensing Devices -- 4.4.2 Field-Effect Transistors (FETs) -- 4.4.3 SiC NW-Based FETs -- 4.4.4 GaN NW-Based FETs -- 4.4.5 ZnO NW-Based FETs -- References -- Chapter 5 Mechanical Properties of Wide Bandgap Nanowires -- 5.1 Characterization Techniques -- 5.1.1 Bending and Buckling Methods -- 5.1.2 Nano Indenting Method -- 5.1.3 Resonance Testing Method -- 5.2 Impact of Defects and Microstructures on Mechanical Properties of NWs -- 5.2.1 Defects -- 5.2.2 Effect of Structures, Dimensions, and Temperatures -- 5.3 Anelasticity and Plasticity Properties -- 5.3.1 Anelasticity -- 5.3.2 Plasticity -- 5.3.3 Brittle to Ductile Transition -- References -- Chapter 6 Optical Properties of Wide Bandgap Nanowires -- 6.1 Optical Properties of WBG NWs -- 6.1.1 Photoluminescence Characterization of NWs -- 6.1.2 Size-Dependent Optical Properties -- 6.1.3 Shape/Morphology-Dependent Optical Properties -- 6.1.4 Effect of Crystal Orientation -- 6.1.5 Tuning Optical Properties of NWs -- 6.2 Wide Bandgap Nanowire Visible Light-Emitting Diodes (LEDs) -- 6.2.1 GaN Nanowire-Based LEDs -- 6.2.2 GaN Nanowire UV LEDs -- 6.2.3 ZnO Nanowire-Based LEDs -- References -- Chapter 7 Thermal Properties of Wide Bandgap Nanowires -- 7.1 Thermal Conductivity -- 7.1.1 Fundamental of Thermal Transport and Thermal Conductivity -- 7.1.2 Measurement of Thermal Conductivity -- 7.1.3 Effect of Diameters on Thermal Properties -- 7.1.4 Effect of Orientation on Thermal Properties -- 7.1.5 Tenability of Thermal Properties -- 7.2 Thermoelectric Properties -- 7.2.1 Fundamental Thermoelectric Properties -- 7.2.2 Thermoelectric Properties of ZnO and GaN NWs -- 7.2.3 Thermoelectric Properties of SiC NWs -- 7.2.4 Optimization of the Thermoelectric Properties -- References -- Chapter 8 Ultraviolet Sensors -- 8.1 Introduction -- 8.2 Sensing Mechanism -- 8.2.1 Photoconductor Architectures.8.2.2 Schottky Diode Photo Sensors -- 8.2.3 Semiconductor p-n Junction -- 8.2.4 Field Effect Transistor-Based UV Sensors -- 8.3 Device Development Technologies -- 8.3.1 The Choice of Wide Bandgap Materials for UV Sensing -- 8.3.2 Top-Down Fabrication of Wide Bandgap Nanowire UV Sensors -- 8.3.3 UV Sensors Using Standing Nanowire Sandwiched Between Electrodes -- 8.3.4 Transfer Process for Nanowires -- 8.4 Applications of Nanowire UV Sensors -- 8.4.1 Flame Sensors -- 8.4.2 Environmental Monitoring -- 8.4.3 Biological Sensors and Health Care Applications -- References -- Chapter 9 Mechanical Sensors -- 9.1 Introduction -- 9.2 Sensing Mechanisms and Corresponding Materials -- 9.2.1 The Piezoresistive Effect -- 9.2.2 Piezotronics Effect in Nanowires -- 9.2.3 Capacitive Sensing -- 9.3 Transducer Configurations and Fabrication Technologies -- 9.3.1 Strain Sensors -- 9.3.2 Pressure Sensors -- 9.3.3 Tactile Sensors -- 9.3.4 Acceleration and Vibration Sensors -- 9.3.5 Energy Harvesting Devices -- 9.4 Applications of Mechanical Sensors Using Wide Bandgap Materials -- 9.4.1 Structural Health Monitoring -- 9.4.2 Advanced Health Care -- 9.4.3 Robotics -- References -- Chapter 10 Gas Sensors -- 10.1 Introduction -- 10.2 Principle of Gas Sensing -- 10.2.1 Transconductance Sensing Mechanism -- 10.2.2 Field Effect Transistor-Based Gas Sensors -- 10.2.3 Metal-Semiconductor Schottky Contact-Based Gas Sensors -- 10.2.4 Integration of Nanowires with Microheaters -- 10.3 Standard Physical Parameters for Gas Sensors -- 10.3.1 Sensitivity -- 10.3.2 Selectivity -- 10.3.3 Response Time -- 10.4 Materials for Different Types of Gases -- 10.4.1 Oxygen Sensors -- 10.4.2 Carbon Dioxide -- 10.4.3 Organic Gases -- 10.4.4 Hydrogen Gas -- 10.5 Integration of Nanowires into Flexible Platform for Advanced Health Care Applications -- References -- Chapter 11 Wide Bandgap Nanoresonators.11.1 Introduction -- 11.2 Principle of Nanoresonators -- 11.2.1 Resonant Frequency -- 11.2.2 Q-Factor -- 11.2.3 Motion Equation with Residual Stress Consideration -- 11.2.4 Why Large f × Q Matter? -- 11.3 Actuation and Measurement Techniques -- 11.3.1 Electrostatic Actuation -- 11.3.2 Piezoelectric Actuation -- 11.3.3 Magnetomotive Actuation -- 11.3.4 Thermal Actuator -- 11.4 Engineering the Performance of Nanoresonators Using Wide Bandgap Materials -- 11.4.1 Residual Stress -- 11.4.2 Mechanical Clamping Enhancement -- 11.4.3 Tuning Resonant Frequency Using Electrically Driven Forces -- 11.5 Applications of Nanoresonators -- 11.5.1 Logic Circuit at High Temperatures -- 11.5.2 Mass Sensing Applications -- 11.5.3 Biosensors -- 11.5.4 Mechanical Sensing -- 11.5.5 Optical Devices -- References -- Index -- EULA.Electronic books.Pham Tuân Anh1254832Dinh Toan769346Nguyen Nam-Trung505357Phan Hoang-Phuong766782MiAaPQMiAaPQMiAaPQBOOK9910590099903321Wide Bandgap Nanowires2908969UNINA