08094nam 22004093 450 991059009970332120221114164004.01-119-76876-41-119-76875-6(MiAaPQ)EBC7073306(Au-PeEL)EBL7073306(CKB)24429521100041(EXLCZ)992442952110004120220816d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPhysics, optics, and spectroscopy of materialsNewark :John Wiley & Sons, Incorporated,2022.©2022.1 online resource (996 pages)Print version: Burshtein, Zeev Physics, Optics, and Spectroscopy of Materials Newark : John Wiley & Sons, Incorporated,c2022 9781119768739 Intro -- Table of Contents -- Title Page -- Copyright Page -- Introduction -- 1 Electromagnetic Radiation/Matter Interaction - A Classical Approach -- 1.1 Electromagnetic Radiation by Atoms and Molecules -- 1.2 Spectral Line Widths -- 1.3 Electromagnetic Radiation Absorption by Atoms and Molecules -- 1.4 Radiation Scattering by Atoms and Molecules -- 1.5 Reminder: Multipole Moments Expansion -- Exercises for Chapter 1 -- 2 Electromagnetic Radiation/Matter Interaction - A Semi‐Quantum Approach -- 2.1 A Reminder of Perturbation Theory -- 2.2 A Reminder of Planck's Black‐Body Radiation -- 2.3 An Atom or Molecule in an Electromagnetic Radiation Field -- 2.4 Stimulated Emission and Einstein's Coefficients -- 2.5 Radiation Absorption and Amplification in Matter -- 2.6 Black Body Radiation - Continuation and Completion -- Exercises for Chapter 2 -- 3 The Hydrogen Atom - Electrostatic Attraction Approximation -- 3.1 De Broglie Waves and Schrödinger's Equation -- 3.2 Differential Operators and Physical Quantities -- 3.3 Schrödinger Equation Solution for Hydrogen and Hydrogen‐Like Atoms -- 3.4 Physical Meanings of Schrödinger Equation Solutions for Hydrogen‐Like Atoms -- 3.5 Spectroscopy of Hydrogen and Hydrogen‐Like Atoms -- 3.6 Selection Rules -- Exercises for Chapter 3 -- 4 Hydrogen Atom - Corrections to the Electrostatic Attraction Approximation -- 4.1 Angular Momentum and the Orbital Quantum Number -- 4.2 Mechanical Relativistic Correction to the Eigenenergies of the Hydrogen Atom -- 4.3 Electron Spinning -- 4.4 Combining Orbital Angular Momentum and Spin -- 4.5 Gyromagnetic Ratio and Spin/Orbit Coupling -- 4.6 Landé Factor -- 4.7 Lamb Shift -- 4.8 Selection Rules and Transition Probabilities -- 4.9 Static External Magnetic and Electric Fields: Zeeman and Stark Effects -- 4.10 The Fine Structure.4.11 Appendix: Clebsch‐Gordan Coefficients for Coupling of Two Angular Momentums -- Exercises for Chapter 4 -- 5 Many‐Electron Atoms -- 5.1 Preamble -- 5.2 Helium‐Like Atoms -- 5.3 Bosons, Fermions, and Pauli Exclusion Principle -- 5.4 Electronic Structure of Many‐Electron Atoms -- 5.5 Excited‐States Structure in Many‐Electron Atoms -- Exercises for Chapter 5 -- 6 Electron Orbits in Molecules -- 6.1 Preamble -- 6.2 The Hydrogen Molecule Ion -- 6.3 Molecular Electronic Angular Momentum -- 6.4 Many‐Electron Homonuclear Diatomic Molecules -- 6.5 Many‐Electron Heteronuclear Diatomic Molecules -- 6.6 Multiatomic Molecules -- 6.7 Appendix: Calculation of an Infinitesimal Volume Element in Elliptic Coordinates -- Exercises for Chapter 6 -- 7 Molecular (Especially Diatomic) Internal Oscillations -- 7.1 Preamble -- 7.2 The Born‐Oppenheimer Approximation -- 7.3 Vibrational and Rotational Modes of Diatomic Molecules -- 7.4 Vibrational/Rotational Absorption Spectra -- 7.5 Electronic Transitions and the Franck‐Condon Principle -- Exercises for Chapter 7 -- 8 Internal Oscillations of Polyatomic Molecules -- 8.1 Preamble -- 8.2 Zero‐Order Mechanical Energy Approximation of a Polyatomic Molecule -- 8.3 Molecular Vibrational Modes -- 8.4 Vibrational Energy Scheme -- 8.5 Rayleigh and Raman Scattering -- 8.6 Point Symmetry -- 8.7 Group Representations, Characters, and Reduction Equation -- 8.8 Similarity Classes, Irreducible Representations, and Character Tables -- 8.9 Selection Rules for Electric Dipole Absorption and Raman Scattering -- 8.10 Method for Calculation and Description of Molecular Vibrational Species -- 8.11 Examples of Molecular Vibrational Symmetry Species -- 8.12 Point Groups, Character Tables, and Selection Rules -- Exercises for Chapter 8 -- 9 Crystalline Solids -- 9.1 Preamble -- 9.2 Periodic Crystals.9.3 Lattice‐Vector and Lattice‐Plane Orientations -- 9.4 The Reciprocal Lattice -- 9.5 Internal Crystalline Oscillations -- 9.6 Appendix: Intermediate Calculation for Justifying Eq. (9.11) -- Exercises for Chapter 9 -- 10 Dielectric Crystalline Solids -- 10.1 Light Propagation in a Dielectric Medium -- 10.2 Light Transition from Vacuum into a Dielectric Medium -- 10.3 Kramers‐Kronig Relations -- 10.4 A Microscopic Model of the Dielectric Function -- 10.5 A Reminder: Gradient, Divergence, Rotor, and the Cauchy Equation -- Exercises for Chapter 10 -- 11 Crystalline Oscillation Species -- 11.1 Introduction -- 11.2 Crystalline Sites -- 11.3 Tabulation Method -- 11.4 Calculation of Crystalline Oscillation Species - An Example -- 11.5 Tabulation of Crystalline Space Group Properties -- Exercises for Chapter 11 -- 12 Atoms and Ions in Crystalline Sites -- 12.1 Introduction -- 12.2 Energy States of Alkali and Alkali‐Like Atoms -- 12.3 Energy States of Many‐Electron Atoms and Ions -- 12.4 Dopant Atoms or Ions in Crystalline Sites -- 12.5 Transition Probabilities and Selection Rules -- 12.6 Spectroscopic Examples -- 12.7 Appendix: An Integral Over Three Multiplied Spherical Harmonics -- Exercises for Chapter 12 -- 13 Non‐Radiative and Mixed Decay Transitions -- 13.1 Non‐Radiative Transitions Between Close Electronic States -- 13.2 Radiative Transition Lifetime and Optical Absorption and Emission Spectra -- 13.3 Multi‐Phonon Non‐Radiative Transitions -- Exercises for Chapter 13 -- 14 Basic Acquaintance with the Laser and Its Components -- 14.1 General Description -- 14.2 The Optical Cavity -- 14.3 The Prism -- 14.4 Reflection Grating -- 14.5 Fabry‐Pérot Etalon -- 14.6 Brewster Window and a Brewster Plate -- 14.7 Loss Presentation in a Laser Cavity -- Exercises for Chapter 14 -- 15 Transverse Optical Modes and Crystal Optics -- 15.1 Preamble.15.2 Transverse Single‐Mode Gaussian Beam -- 15.3 Transverse Multi‐Mode Beams -- 15.4 Selecting a Transverse Mode for a Laser Output -- 15.5 Lens Crossing of a Single‐Mode Transverse Gaussian Beam -- 15.6 Multi‐Mode Transverse Gaussian Beams -- 15.7 Crystal Optics -- 15.8 Retardation Plates -- Exercises for Chapter 15 -- 16 Pulsed High Power Lasers -- 16.1 Introduction -- 16.2 Passive Q‐Switching Using a Saturable Light Absorber -- 16.3 Active Q‐Switching Using Electrooptic Crystals -- 16.4 Mode‐Locking -- Exercises for Chapter 16 -- 17 Frequency Conversions of Laser Beams -- 17.1 Non‐Linear Crystals -- 17.2 Electromagnetic Wave Propagation in a Non‐Linear Crystal -- 17.3 Optical Parametric Oscillations -- 17.4 A Reminder: Hyperbolic "Trigonometric" Functions -- Exercises for Chapter 7 -- 18 Examples of Various Laser Systems -- 18.1 Introduction -- 18.2 Helium‐Neon Laser -- 18.3 Copper Vapor Laser -- 18.4 Hydrogen Fluoride Chemical Laser -- 18.5 Neodymium‐YAG Laser -- 18.6 Dye Lasers -- 18.7 Diode Lasers -- Exercises for Chapter 18 -- Appendix A: Greek alphabet and phonetic names -- Appendix B: Table of physical constants -- Appendix C: Dirac δ function -- Appendix D: Literature references for further reading -- 1. Books -- 2. Journal publications -- Index -- End User License Agreement.535.84Burshtein Zeev1254830MiAaPQMiAaPQMiAaPQBOOK9910590099703321Physics, Optics, and Spectroscopy of Materials2908967UNINA