10585nam 22004333 450 991058597500332120220806060222.09781119834694(electronic bk.)9781119834687(MiAaPQ)EBC7069546(Au-PeEL)EBL7069546(CKB)24342152900041(EXLCZ)992434215290004120220806d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierNuclear Electronics with Quantum Cryogenic Detectors2nd ed.Newark :John Wiley & Sons, Incorporated,2022.©2022.1 online resource (448 pages)Print version: Polushkin, Vladimir Nuclear Electronics with Quantum Cryogenic Detectors Newark : John Wiley & Sons, Incorporated,c2022 9781119834687 Cover -- Title Page -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1 Interaction of the Nuclear Radiation with Detector Absorbers -- Introduction -- 1.1 The Intrinsic Quantum Efficiency of Radiation Detectors -- 1.2 Detection of Charged Particles -- 1.2.1 Light-Charged. Particles -- 1.2.2 The Continuous "Braking" Radiation .(Bremsstrahlung) -- 1.2.3 Backscattering of Charged Particles -- 1.2.4 Heavy-Charged. Particles -- 1.3 Primary Interactions of X- and γ-Ray. Photons with Solid-State. Absorbers -- 1.3.1 Photoelectric Effect -- 1.3.2 Compton Scattering -- 1.3.3 The Pair Production -- 1.3.4 Attenuation of Photon Radiation in Solid-State. Detector Absorbers -- 1.4 Detection of Neutrons with Solid-State. Radiation Sensors -- 1.4.1 10B(n,α)7Li Nuclear Reaction -- 1.4.2 6Li(n,α)3H Nuclear Reaction -- 1.5 Heat Generation in Athermal Quasiparticle Absorbers -- References -- Chapter 2 Radiation Detectors with Superconducting Absorbers -- Introduction -- 2.1 Selected Topics of the Superconductivity Theory -- 2.1.1 The Electron-Phonon. Interaction and Cooper Pairing Mechanisms -- 2.1.2 The Behavior of Superconductors in the Magnetic Field -- 2.1.3 The Tunnel Josephson Junction -- 2.1.4 The Superconducting Transmission Line: The Kinetic Inductance -- 2.2 Superconducting Absorbers: The Down-Conversion. of Particle Energy and Intrinsic Energy Resolution -- 2.2.1 The Energy Down-Conversion. Process in Superconducting Absorbers -- 2.2.2 The Intrinsic Energy Resolution of Quasiparticle Detectors with Superconducting Absorbers -- 2.3 Transport in the Nonequilibrium Superconductors: Incomplete Charge Collection Mechanisms -- 2.3.1 The Recombination Time of Quasiparticles in Superconductor Absorbers -- 2.3.2 The Rothwarf-Taylor (R-T) Phenomenological Framework.2.3.3 The Diffusion of Quasiparticles in Thin-Film. Superconducting Absorbers: Incomplete Charge Collection -- 2.3.4 Noise Equivalent Power (NEP) of Superconducting Absorbers -- 2.4 Quasiparticle Radiation Detectors with Superconducting Tunnel Junction (STJ) Readout -- 2.4.1 The Bandgap Engineering and Fabrication of STJ Detectors -- 2.4.2 The Giaever I-V Curve of the STJs -- 2.4.3 The Tunneling Mechanisms in STJs -- 2.4.4 Pileup and Count Rate Capability of the STJ Detectors -- 2.5 Quasiparticle Radiation Detectors with Microwave Kinetic Inductance Sensors (MKID) -- 2.5.1 The Operating Principle of Microwave Kinetic Inductance Sensors -- 2.5.2 The DROID X-ray. Detector with Microwave Kinetic Inductance Sensor Readout -- 2.6 Integration of STJ Detectors with Microwave SQUID Multiplexed Readout -- 2.6.1 Bandwidth Considerations -- References -- Chapter 3 Radiation Detectors with Normal Metal Absorbers -- Introduction -- 3.1 Spectrometers Based on Transition-Edge. Sensor (TES) Microcalorimeters -- 3.1.1 Fundamentals of TES Design -- 3.1.2 The Electrothermal Feedback in TES Microcalorimeters -- 3.2 TES Microcalorimeters with Microwave SQUID Readout (μMUX): Imaging Cameras -- 3.2.1 The Quantum Efficiency -- 3.2.2 The Energy Resolution -- 3.2.3 The Throughput -- 3.2.4 The Bandwidth Per the Core TES Channel -- 3.3 Hot Electron Microcalorimeter with the NIS Tunnel Junction Thermometer -- References -- Chapter 4 Radiation Detectors with Semiconductor Absorbers -- Introduction -- 4.1 Semiconductor Transport -- 4.1.1 Valence Bond and Energy Band Models -- 4.1.2 Carrier Scattering Mechanisms and Mobility in Semiconductor Bulk Materials -- 4.1.3 Carrier Generation and Recombination (G-R) Processes -- 4.1.4 Effects of the G-R Transport on the Performance of Radiation Detectors.4.1.5 Tunneling-Assisted. Transport in Semiconductor Materials -- 4.1.6 Tunneling Transport Across the Thin Dielectric Barrier -- 4.1.7 The Semiconductor-Vacuum. Interface: Surface Transport -- 4.2 Macroscopic Modeling of Semiconductor Devices -- 4.2.1 Microscopic Transport Models Based on the Schrödinger Equation -- 4.2.2 The Semiclassical Transport Models -- 4.2.3 The Initial and Boundary Conditions in Device Modeling: The Ramo-Shockley Theorem -- 4.3 Front Windows in Semiconductor Radiation Detectors -- 4.3.1 Entrance Window Based on Schottky Barrier Junction -- 4.3.2 Front Window Based on Metal-Insulator-Semiconductor. (MIS) Junction -- 4.3.3 The p-n Junction-Based. Front Window in Radiation Detectors -- 4.4 Fabrication of Silicon Drift Detectors (SDD) -- 4.4.1 The Epitaxially Grown Ultra-shallow. p+n Junction Entrance Windows -- 4.4.2 The Pure Boron Technology for Ultra-shallow. Entrance Windows -- 4.5 Semiconductor Drift Detectors -- 4.5.1 Semiconductor Detectors: Operation Principle and Performance Specifications -- 4.5.2 The Intrinsic Energy Resolution of Semiconductor Detectors -- 4.5.3 Time Response of SDDs -- 4.6 The Quantum Calorimetric Electron-Hole. Detector with Semiconductor Absorber -- 4.6.1 The Phonon System Dynamics in Semiconductor Materials -- 4.6.2 The Design and Performance of the Quantum Electron-Hole. Detector -- References -- Chapter 5 Front-End. Readout Electronic Circuits for Quantum Cryogenic Detectors -- Introduction -- 5.1 JFET Transconductance Preamplifiers -- 5.1.1 Principles of JFET Transconductance Amplifiers -- 5.1.2 Settling Time of Preamplifiers -- 5.2 Dynamics and Noise of JFET Amplifiers -- 5.2.1 Static and Dynamic Parameters of JFETs -- 5.2.2 Noise Characteristics of JFETs -- 5.2.3 PentaFET: High Precision Reset Mechanism -- 5.2.4 The JFET Cascode Stage.5.2.5 The Source Follower-Based. Charge-Sensitive. Preamplifier -- 5.2.6 The Differential Stage Based on Matched JFETs -- 5.3 The Low Noise Amplifiers Based on High Electron Mobility Transistor (HEMT) -- 5.4 The dc SQUID Current Amplifiers -- 5.4.1 The dc SQUID as a Superconducting Parametric Amplifier -- 5.4.2 The dc SQUID with an Intermediary Input Transformer -- 5.4.3 The Coupled Energy Resolution of a Double Transformer dc SQUID -- 5.4.4 The dc SQUID Readout Electronics -- 5.4.5 The SQUID with the Digital Bode FLL Controller -- 5.4.6 The dc SQUID Amplifier in the Small-Signal Limit (Noise) -- 5.4.7 SQUID Current Amplifier in the Large Signal Limit (Dynamics) -- 5.4.8 SQUID Current Amplifier in the Large Signal Limit (Noise) -- 5.5 The dc SQUID Current Amplifier at Ultralow Temperature (ULT) -- 5.5.1 A Double-Stage. Amplifier with a Single Front ULT SQUID -- 5.5.2 A Double-Stage. Amplifier with the Front ULT SQUID Array -- 5.6 Microwave SQUID Parametric Amplifiers -- 5.6.1 Operation Principle of Microwave SQUIDs with External Pumping (MSQUIDs) -- 5.6.2 The Nonlinearities in the MSQUID Readout -- 5.6.3 The Flux Ramp Modulation Methodology -- 5.6.4 Performance of MSQUID Current Amplifier -- 5.7 Design Methodology of Analog Circuitries -- 5.7.1 The Laplace Transform: Transfer Functions of Electronic Networks -- 5.7.2 Design of Analog Pulse-Shaping. Filter Cells -- 5.7.3 Design of Low-Pass. Filters -- 5.7.4 Graphical Methods of Analysis and Synthesis in the Frequency Domain -- 5.7.5 The Describing Function of Nonlinear Elements in the Frequency Domain -- 5.7.6 Systems with Synchronous Multipliers -- References -- Chapter 6 The Energy Resolution of Radiation Spectrometers -- Introduction -- 6.1 Signal-to-Noise. Ratio, Equivalent Noise Charge of Radiation Spectrometers: General Definitions.6.2 Energy Resolution of Quasiparticle Detectors (STJs, SDDs) -- 6.2.1 The Tunnel Junction Coupled to a JFET Transconductance Amplifier -- 6.2.2 Energy Resolution of STJ Sensors Readout with SQUID Current Preamps -- 6.3 Optimal Filtration in Radiation Spectrometers -- 6.4 Energy Resolution of TES Microcalorimeters -- 6.5 Matrix Readout Multiplexing of STJ Detectors -- 6.5.1 Matrix Readout of STJ Sensors with JFET Transconductance Amplifiers -- 6.5.2 Matrix Readout with SQUID Current Amplifiers -- 6.6 Time-Division. Multiplexor (TDM) -- 6.7 Frequency Division Multiplexing with Microwave SQUIDs (μMUX) -- 6.8 Code Division Multiplexing (CDM): Spread-Spectrum. Modulation (SSM) -- References -- Chapter 7 Signal Processing in Radiation Spectrometers -- Introduction -- 7.1 Signal Conditioning Units -- 7.1.1 Overview of the Digital Pulse Processing Architectures -- 7.1.2 AC-Coupled. Digital Spectrometers -- 7.1.3 Digital Pulse Processing with the Moving Window Deconvolution -- 7.1.4 DC-Coupled. Digital Pulse Processors -- 7.1.5 DC-Coupled. Digital Pulse Processors with a Sliding Window Signal Conditioner -- 7.2 Analog-to-Digital. Conversion -- 7.2.1 Analog-to-Digital. Converters: Basic Information -- 7.2.2 The Quantization Noise Model of ADC -- 7.2.3 Nonlinearities of ADC -- 7.2.4 Aperture Time of ADCs -- 7.2.5 Aperture Uncertainty of ADCs -- 7.2.6 Reduction of the Differential Nonlinearity with the Sliding Scale Method -- 7.3 Digital Filtration -- 7.3.1 Z-Transform. Methodology -- 7.3.2 Design of Digital Filters with Z-transform -- 7.3.3 The Stability of Digital Filters -- 7.3.4 Trapezoidal Pulse-Shaping. Digital Filter -- 7.3.5 Moving Average Pulse Processing -- 7.4 Throughput of Digital Spectrometers -- 7.4.1 Pulse Recognition Channel: Pileup Detection -- 7.4.2 Timing Resolution of Digital Spectrometers.7.4.3 The Pileup Decoding in Digital Pulse Processors.Electronic books.Polushkin Vladimir1252692MiAaPQMiAaPQMiAaPQ9910585975003321Nuclear Electronics with Quantum Cryogenic Detectors2904309UNINA