10752nam 2200541 450 991058332410332120230120002852.00-12-813141-10-12-813140-3(OCoLC)1061860543(MiAaPQ)EBC5580497(Au-PeEL)EBL5580497(OCoLC)1066177142(EXLCZ)99410000000712195720181209d2019 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPlastics to energy fuel, chemicals, and sustainability implications /edited by S. M. Al-SalemOxford, United Kingdom ;Cambridge, MA :William Andrew, Applied Science Publishers,[2019]©20191 online resource (560 pages)PDL handbook seriesFront Cover -- Plastics to Energy -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Authors -- Preface -- What Distinguishes This Book From Others Touching on the Topic at Hand? -- Recommendations for Incorporating This Book in Academic Curricula -- Acknowledgments -- Potential Impact of This Book -- I. Plastics and Plastic Solid Waste (PSW) -- 1 Introduction -- 1.1 Introductory Remark: Dependency on Plastics -- 1.2 The Nature of Plastics and Impact on Waste Management -- 1.3 Plastics and Polymers: Technical Aspects and Difference Between Both Terms -- 1.4 Sustainable Production of Polymeric Articles -- 1.5 History of Plastics to Fuel and Sustainability -- 1.6 Polymer Waste Generation/Collection Logistics and Socio-Economic Factors -- 1.7 Summary -- List of Abbreviations -- References -- Further Reading -- 2 Major Technologies Implemented for Chemicals and Fuel Recovery -- 2.1 Sources of Plastic Solid Waste -- 2.2 The Nature of Organic Waste -- 2.3 A Note on Logistics, Collection, and Generation -- 2.4 Plastic Solid Waste Management Hierarchy -- 2.5 Physical Treatment of Plastic Waste -- 2.6 Chemicals and Energy Production Technologies -- 2.6.1 Main Mechanisms of Degradation -- 2.6.2 Chemical Treatment of Pure Nature -- 2.6.3 Thermo-Chemical Treatment of Polymers -- 2.6.4 Energy Recovery From Plastics Via Incineration Processes -- 2.7 Summary -- List of Abbreviations -- References -- 3 Energy Production From Plastic Solid Waste (PSW) -- 3.1 Key Concepts -- 3.2 Types of Incineration Units -- 3.3 Incineration of Plastics -- 3.4 Governing Regulations and Key Criteria -- 3.5 Notes and Case History Success Stories -- List of Abbreviations -- References -- 4 The Sustainability Challenge in the Context of Polymer Degradation -- 4.1 The Fate of Products From Polymers Degradation and Faced Challenges.4.2 Environmental Considerations and Tools -- 4.2.1 Background, Definitions and Terminology of LCA -- 4.2.2 Methodology of LCA Execution -- 4.2.3 Distinguishing LCA Types -- 4.2.4 Evaluation of Alternatives and Associated Burdens -- 4.3 Economical and Socioeconomical Aspect of Facilities Encompassing Polymer Degradation -- 4.4 Case Study: Offsetting Environmental Burdens Associated with Downstream Industry -- 4.4.1 Benefits of Thermo-Chemical Treatment (TCT) of Plastics -- 4.4.2 Assumptions and Scenarios Description -- 4.4.3 Life Cycle Inventory (LCI) and Results -- 4.4.4 Sustainable Practice Recommendations -- 4.5 Case Study: Exposure to Mercury From Waste With High Content of Plastic in Incineration Plants -- 4.5.1 Rationale and Justification -- 4.5.2 Country Specific Description -- 4.5.3 Methods -- 4.5.4 Assessment and Observations -- 4.5.5 Summary and Concluding Notes -- 4.6 Concluding Notes -- List of Abbreviations -- References -- Further Reading -- II. Products Recovery From Plastics -- 5 Feedstock and Optimal Operation for Plastics to Fuel Conversion in Pyrolysis -- 5.1 Overview of Concept and Key Issues -- 5.1.1 Technology Review Encompassing Other Techniques -- 5.1.2 Advantages of Pyrolysis Over Other Technologies -- 5.2 Type of Materials and Units Used in the Pyrolysis Process -- 5.2.1 Materials Properties and Impact -- 5.2.2 Units and Main Reactor Vessels Used -- 5.3 Process Conditions -- 5.4 A Note on Limitations -- 5.5 The Pyrolysis of End of Life Tires -- 5.5.1 Importance of Managing End of Life Tires -- 5.5.2 Origin and Recycling of End of Life Tires -- 5.6 Case Study: Commissioning a Novel Bench Scale Reactor Unit-SULTAN 1 -- 5.6.1 Work Motivation -- 5.6.2 Materials -- 5.6.3 Bench Scale Pyrolysis System Description -- 5.6.4 Conducted Pyrolysis Reactions -- 5.6.5 Gas Chromatography Analysis Laboratory Protocol.5.6.6 Obtained Results -- List of Abbreviations -- Acknowledgments -- References -- Further Reading -- 6 Catalytic Conversion and Chemical Recovery -- 6.1 Introduction -- 6.2 Catalytic Versus Noncatalytic Pyrolysis -- 6.2.1 Noncatalytic Pyrolysis -- 6.2.2 Catalytic Pyrolysis -- 6.2.3 Differences Between Catalytic and Noncatalytic Pyrolysis -- 6.2.4 Catalysts -- 6.2.4.1 Homogeneous Catalytic Process -- 6.2.4.2 Heterogeneous Catalytic Process -- 6.3 Effect of Operation Variables -- 6.3.1 Reaction Temperature -- 6.3.2 Polymer-to-Catalyst Ratio -- 6.3.3 Polymer Waste Composition -- 6.3.4 Reaction and Residence Time -- 6.3.5 Mass and Heat Transfer -- 6.4 Reactor Types -- 6.4.1 Fixed and Fluidized Bed Reactors -- 6.4.2 Conical Spouted Bed Reactor -- 6.4.3 Batch and Semibatch Reactors -- 6.4.4 Microwave Assisted Technology -- 6.5 Processing -- 6.5.1 Direct Catalytic Pyrolysis -- 6.5.2 Thermal Pyrolysis With Catalytic Upgrading of Pyrolysis Oil -- 6.6 Co-processing of Plastics -- 6.7 Concluding Remarks -- References -- 7 Fuel Properties Associated With Catalytic Conversion of Plastics -- 7.1 Introduction -- 7.2 Pyrolysis Basics -- 7.2.1 Kinetics -- 7.2.2 Thermal Degradation -- 7.2.3 Catalytic Degradation -- 7.3 Analytical Quantitative and Qualitative Determination of Pyrolysis -- 7.3.1 Thermogravimetric Analysis -- 7.3.2 Pyrolysis-GC/MS -- 7.3.2.1 Polypropylene and Polyethylene -- 7.3.2.2 Polystyrene -- 7.3.2.3 Polyurethane -- 7.4 Pyrolysis Study of Polypropylene and Polyethylene -- 7.4.1 Polypropylene -- 7.4.1.1 Fuel Properties -- 7.4.1.2 Gasoline and Diesel Products From Distillation of Medicine Bottles-Polypropylene -- 7.4.1.3 Size Exclusion Chromatography Analysis -- 7.4.1.4 Simulated Distillation by GC-FID -- 7.4.1.5 Chemical Characterization of Plastic Oil Fractions -- 7.4.1.5.1 NMR and IR Analysis.7.4.1.5.2 Properties of Gasoline and Diesel Fractions -- 7.4.1.5.3 Hydroprocessing -- 7.4.2 Polyethylene -- 7.4.2.1 Gasoline and Diesel Products From Distillation of Green Plastics-High-Density Polyethylene -- 7.4.2.2 Size Exclusion Chromatography Analysis -- 7.4.2.3 Elemental Analysis -- 7.4.2.4 Simulated Distillation -- 7.4.2.5 Fuel Analysis -- 7.4.2.5.1 NMR and FT-IR Analysis -- 7.4.2.5.2 Properties of Gasoline and Diesel Fractions -- 7.4.2.5.3 Hydroprocessing -- 7.5 Comparison of Pyrolysis Oil Fuel Blends With Commercial Fuel -- 7.5.1 Properties of Pyrolyzed Polypropylene Samples and Comparison to Ultra-Low Sulfur Diesel -- 7.5.2 Properties of Blends With Ultra-Low Sulfur Diesel -- 7.6 Techno-Economic Analysis -- 7.6.1 Estimation of Capital Investment -- 7.6.2 Major Equipment -- 7.6.3 Manufacturing Costs -- 7.6.4 Variable Production Cost -- 7.6.4.1 Materials Cost -- 7.6.4.2 Utilities -- 7.6.4.3 Operation/Maintenance Cost -- 7.6.4.4 Labor Costs -- 7.6.4.5 Fixed Charges -- 7.6.4.6 Cash Flow -- 7.7 Conclusions and Future prospects -- References -- Further Reading -- 8 Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery -- 8.1 Introduction -- 8.2 Fluidization Phenomena and Fluidized Bed Reactors -- 8.3 Advantages and Limitations of Using the Fluidized Beds for Pyrolysis of Plastic Waste -- 8.4 Factors Affecting Thermal and Catalytic Pyrolysis in Fluidised Beds -- 8.5 Thermal Pyrolysis of Municipal Solid Waste in the Fluidized Bed Reactor -- 8.6 Conclusions -- References -- 9 Kinetic Studies Related to Polymer Degradation and Stability -- 9.1 Importance and Concept of Degradation Kinetics -- 9.1.1 Major Influencing Variables and Mathematical Derivation -- 9.1.2 Main Kinetics Analysis Methods -- 9.1.3 Multiple Step Degradation Kinetics -- 9.2 Limitations and Considerations in Procedures for Kinetic Experiments.9.3 Plastics Degradation Kinetics in Various Reaction Conditions -- 9.3.1 Kinetic Parameters and Degradation Mechanism Modeling of Polymers Pyrolysis -- 9.3.2 Kinetic Analysis In Laboratory Scale Experiments -- 9.3.3 Kinetic Analysis In Reactive Atmospheres -- 9.4 Case Study: Isothermal Degradation Reaction Kinetics of Polyethylene in Pyrolysis TG -- 9.4.1 Review of Isothermal Kinetics in Context of Polymer Degradation -- 9.4.2 Materials and Experimental Set-up -- 9.4.3 Polymer Loss and Product Formation Patterns -- 9.4.4 Mathematical Modeling and Kinetic Parameters Estimation -- 9.4.5 Main Results of Case Study -- List of Abbreviations -- References -- 10 Gasification of Plastic Solid Waste and Competitive Technologies -- 10.1 Introduction -- 10.2 Gasification -- 10.2.1 Types of Gasifier -- 10.2.1.1 Fixed/Moving Bed Gasifier -- 10.2.1.2 Fluidized Bed Gasifier -- 10.2.1.3 Spouted Bed Gasifier -- 10.2.2 Gasification Operating Conditions -- 10.2.2.1 Equivalence Ratio -- 10.2.2.2 Operating Temperature -- 10.2.2.3 Gasifying Agents -- 10.2.2.4 Operating Pressure -- 10.2.2.5 Feedstock -- 10.2.3 Challenges in Gasification of Plastic Waste -- 10.2.3.1 Tar Removal, Gas Cleaning Techniques and Agglomeration Solution -- 10.2.3.2 Development of Two-Stage Gasifier for Plastic Gasification -- 10.2.3.3 Cogasification of Plastic with Other Solid Fuels -- 10.3 Pyrolysis of Plastic Wastes -- 10.3.1 Characterization of Products from Pyrolysis -- 10.3.2 Factors Affecting Plastic Pyrolysis -- 10.3.2.1 Temperature -- 10.3.2.2 Type of Plastic -- 10.3.2.3 Residence Time -- 10.3.2.4 Pressure -- 10.3.2.5 Catalysts -- 10.3.2.6 Reactor Type -- 10.4 Plasma Gasification -- 10.4.1 Effects of Operating Parameters on Plasma Gasification -- 10.5 Summary -- List of Abbreviations -- Acknowledgment -- References.11 The Valorization of Plastic Via Thermal Means: Industrial Scale Combustion Methods.PDL handbook series.PlasticsPlastic scrapRefuse and refuse disposalPlastics.Plastic scrap.Refuse and refuse disposal.668.4Al-Salem S. M.MiAaPQMiAaPQMiAaPQCaOWtUBOOK9910583324103321Plastics to energy2068038UNINA01343oam 2200313z- 450 991015779220332120230906203136.01-62517-841-7(CKB)3710000001009600(BIP)055478399(VLeBooks)9781625178411(Exl-AI)993710000001009600(EXLCZ)99371000000100960020210505c2015uuuu -u- -engLeadership & The Road to High PerformancePeter Hughes1 online resource (166 p.) ill1-312-46563-8 Leadership exercising transformational leadership, developing high performing teams, creating operational excellence, implementing organizational change, and shaping the ideal organizational culture. This book will challenge managers to become transformational leaders by creating and implementing organizational changes and demonstrating new leadership behaviors that will create a new dimension of organizational success.Transformational leadershipGenerated by AILeadershipGenerated by AITransformational leadershipLeadershipHughes Peter169104BOOK9910157792203321Leadership & The Road to High Performance3577356UNINA